江苏专用高考数学复习解答题第三周星期六解答题综合练文.docx_第1页
江苏专用高考数学复习解答题第三周星期六解答题综合练文.docx_第2页
江苏专用高考数学复习解答题第三周星期六解答题综合练文.docx_第3页
江苏专用高考数学复习解答题第三周星期六解答题综合练文.docx_第4页
江苏专用高考数学复习解答题第三周星期六解答题综合练文.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

星期六(解答题综合练)2017年_月_日1.在ABC中,角A,B,C的对边分别为a,b,c,若acb.(1)求证:B;(2)当2,b2时,求ABC的面积.(1)证明cos B0,且0B.B(当且仅当ac时取得等号).(2)解2,accos B2,由余弦定理得b2a2c22accos B12,a2c216,又acb2,ac4,cos B,由(1)知0B,sin B.SABCacsin B.2.如图,在四棱锥P ABCD中,PA底面ABCD,ACCD,DAC60,ABBCAC,E是PD的中点,F为ED的中点.(1)求证:平面PAC平面PCD;(2)求证:CF平面BAE.证明(1)因为PA底面ABCD,CD平面ABCD,所以PACD,又ACCD,且ACPAA,所以CD平面PAC,又CD平面PCD,所以平面PAC平面PCD.(2)取AE中点G,连接FG,BG.因为F为ED的中点,所以FGAD且FGAD.在ACD中,ACCD,DAC60,所以ACAD,所以BCAD.在ABC中,ABBCAC,所以ACB60,从而ACBDAC,所以ADBC.综上,FGBC,FGBC,四边形FGBC为平行四边形,所以CFBG.又BG平面BAE,CF平面BAE,所以CF平面BAE.3.已知椭圆C:1(ab0)上任一点P到两个焦点的距离的和为2,P与椭圆长轴两顶点连线的斜率之积为.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).(1)若(O为坐标原点),求|y1y2|的值;(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.解(1)由椭圆的定义知a,设P(x,y),则有,则,又点P在椭圆上,则,b22,椭圆C的方程是1.,|cosAOB,|sinAOB4,SAOB|sinAOB2,又c1,又SAOB|y1y2|1,故|y1y2|4.(2)假设存在一点Q(m,0),使得直线QA,QB的倾斜角互为补角,依题意可知直线l斜率存在且不为零,直线l的方程为yk(x1)(k0),由消去y得(3k22)x26k2x3k260,设A(x1,y1),B(x2,y2),则x1x2,x1x2.直线QA,QB的倾斜角互为补角,kQAkQB0,即0,又y1k(x11),y2k(x21),代入上式可得2x1x22m(m1)(x1x2)0,22m(m1)0,即2m60,m3,存在Q(3,0)使得直线QA,QB的倾斜角互为补角.4.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米,观察者从距离墙x(x1)米,离地面高a(1a2)米的C处观赏该壁画,设观赏视角ACB.(1)若a1.5,问:观察者离墙多远时,视角最大?(2)若tan ,当a变化时,求x的取值范围.解(1)当a1.5时,过点C作AB的垂线,垂足为点D,则BD0.5,且ACDBCD,由已知知观察者离墙x米,且x1,则tanBCD,tanACD,所以tan tan(ACDBCD),当且仅当x1时,等号成立.又因为tan 在上单调递增,所以当观察者离墙米时,视角最大.(2)由题意得tanBCD,tan ACD,又tan ,所以tan tan,所以a26a8x24x,当1a2时,0a26a83,所以0x24x3,即解得0x1或3x4,又因为x1,所以3x4,所以x的取值范围为3,4.5.设数列bn满足bn2bn1bn(nN*),b22b1.(1)若b33,求b1的值;(2)求证数列bnbn1bn2n是等差数列;(3)设数列Tn满足:Tn1Tnbn1(nN*),且T1b1,若存在实数p,q,对任意nN*都有pT1T2T3Tnq成立,试求qp的最小值.(1)解bn2bn1bn,b3b2b13b13,b11.(2)证明bn2bn1bn,bn3bn2bn1,得bn3bn,(bn1bn2bn3n1)(bnbn1bn2n)bn1bn2(bn3bn)11为常数,数列bnbn1bn2n是等差数列.(3)解Tn1Tnbn1Tn1bnbn1Tn2bn1bnbn1b1b2b3bn1当n2时Tnb1b2b3bn(*),当n1时,T1b1适合(*)式Tnb1b2b3bn(nN*).b1,b22b11,b33b1,bn3bn,T1b1,T2T1b2,T3T2b3,T4T3b4T3b1T1,T5T4b5T2b3b4b5T2b1b2b3T2,T6T5b6T3b4b5b6T3b1b2b3T3,T3n1T3n2T3n3T3n2b3n1b3nb3n1T3n1b3nb3n1b3n2T3nb3n1b3n2b3n3T3n2b1b2b3T3n1b1b2b3T3nb1b2b3(T3n2T3n1T3n),数列T3n2T3n1T3n(nN*)是等比数列,首项T1T2T3且公比q,记SnT1T2T3Tn,当n3k(kN*)时,Sn(T1T2T3)(T4T5T6)(T3k2T3k1T3k)3,Sn3;当n3k1(kN*)时Sn(T1T2T3)(T4T5T6)(T3k2T3k1T3k)T3k3(b1b2b3)k340Sn3;当n3k2(kN*)时Sn(T1T2T3)(T4T5T6)(T3k2T3k1T3k)T3k1T3k3(b1b2b3)k1b1b2(b1b2b3)k33,Sn3.综上得Sn3,故p且q3,qp的最小值为.6.已知函数f(x)x2(12a)xaln x(a为常数).(1)当a1时,求曲线yf(x)在x1处切线的方程;(2)当a0时,讨论函数yf(x)在区间(0,1)上的单调性,并写出相应的单调区间.解(1)当a1时,f(x)x2xln x,则f(x)2x1,所以f(1)2,且f(1)2.所以曲线yf(x)在x1处的切线的方程为:y22(x1),即:y2x.(2)由题意得f(x)2x(12a)(x0),由f(x)0,得x1,x2a,当0a时,由f(x)0,又知x0得0xa或x1由f(x)0,又知x0,得ax,所以函数f(x)的单调增区间是(0,a)和,单调减区间是,当a时,f(x)0,且仅当x时,f(x)0,所以函数f(x)在区间(0,1)上是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论