




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
登封市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错2 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM3 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A232B252C472D4844 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca5 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?6 已知命题p:“1,e,alnx”,命题q:“xR,x24x+a=0”若“pq”是真命题,则实数a的取值范围是( )A(1,4B(0,1C1,1D(4,+)7 已知直线l平面,P,那么过点P且平行于l的直线( )A只有一条,不在平面内B只有一条,在平面内C有两条,不一定都在平面内D有无数条,不一定都在平面内8 设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是( )A(0,1)B(1,2)C(2,3)D(3,4)9 等于( )A B C D10若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,11如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=12已知a=5,b=log2,c=log5,则( )AbcaBabcCacbDbac二、填空题13二项式展开式中,仅有第五项的二项式系数最大,则其常数项为14已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个15设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)16设f(x)是(x2+)6展开式的中间项,若f(x)mx在区间,上恒成立,则实数m的取值范围是17已知两个单位向量满足:,向量与的夹角为,则 .18设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为三、解答题19已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域20(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力21已知数列an满足a1=1,an+1=(nN*)()证明:数列+是等比数列;()令bn=,数列bn的前n项和为Sn证明:bn+1+bn+2+b2n证明:当n2时,Sn22(+) 22已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围23如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值24如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180)到ABEF的位置()求证:CE平面ADF;()若K为线段BE上异于B,E的点,CE=2设直线AK与平面BDF所成角为,当3045时,求BK的取值范围登封市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念2 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B3 【答案】 C【解析】【专题】排列组合【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有=5601672=472故选C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题4 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题5 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查6 【答案】A【解析】解:若命题p:“1,e,alnx,为真命题,则alne=1,若命题q:“xR,x24x+a=0”为真命题,则=164a0,解得a4,若命题“pq”为真命题,则p,q都是真命题,则,解得:1a4故实数a的取值范围为(1,4故选:A【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键7 【答案】B【解析】解:假设过点P且平行于l的直线有两条m与nml且nl由平行公理4得mn这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误故选B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型8 【答案】A【解析】解:令f(x)=x3,f(x)=3x2ln=3x2+ln20,f(x)=x3在R上单调递增;又f(1)=1=0,f(0)=01=10,f(x)=x3的零点在(0,1),函数y=x3与y=()x的图象的交点为(x0,y0),x0所在的区间是(0,1)故答案为:A9 【答案】D【解析】试题分析:原式考点:余弦的两角和公式.10【答案】B【解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B11【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目12【答案】C【解析】解:a=51,b=log2log5=c0,acb故选:C二、填空题13【答案】70 【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为Tr+1=(1)rC8rx82r令82r=0得r=4则其常数项为C84=70故答案为70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别14【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题15【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题16【答案】5,+)【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x)=x3,再由条件可得mx2 在区间,上恒成立,求得x2在区间,上的最大值,可得m的范围【解答】解:由题意可得 f(x)=x6=x3由f(x)mx在区间,上恒成立,可得mx2 在区间,上恒成立,由于x2在区间,上的最大值为 5,故m5,即m的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题17【答案】【解析】考点:向量的夹角【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式;三是利用数量积的几何意义(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简18【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m2三、解答题19【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分20【答案】【解析】(1)由题意,知不等式解集为由,得,2分所以,由,解得4分(2)不等式等价于,由题意知6分 21【答案】 【解析】()证明:数列an满足a1=1,an+1=(nN*),nan=3(n+1)an+4n+6,两边同除n(n+1)得,即,也即,又a1=1,数列+是等比数列是以1为首项,3为公比的等比数列()()证明:由()得, =3n1,原不等式即为:,先用数学归纳法证明不等式:当n2时,证明过程如下:当n=2时,左边=,不等式成立假设n=k时,不等式成立,即,则n=k+1时,左边=+=,当n=k+1时,不等式也成立因此,当n2时,当n2时,当n2时, ,又当n=1时,左边=,不等式成立故bn+1+bn+2+b2n()证明:由(i)得,Sn=1+,当n2, =(1+)2(1+)2=2,=2,将上面式子累加得,又=1=1,即2(),当n2时,Sn22(+)【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高22【答案】 【解析】解:若命题p是真命题:“直线x+ym=0与圆(x1)2+y2=1相交”,则1,解得1;若命题q是真命题:“方程x2x+m4=0的两根异号”,则m40,解得m4若pq为真,p为真,则p为假命题,q为真命题实数m的取值范围是或【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题23【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面BCD=BC,AO平面BCD,O是BC中点,F是BE中点,OFBC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,0),C(0,0),D(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碳交易机制影响-第2篇-洞察与解读
- 班组春节前安全培训课件
- 班组成员安全培训计划课件
- 2025年南京市公安局第一批面向社会公开招聘警务辅助人员715人模拟试卷及答案详解(夺冠系列)
- 班组安全活动培训六必有课件
- 2025广西贵港市覃塘区黄练镇储备村“两委”后备干部人选130人模拟试卷及一套参考答案详解
- 2025年陕西国网三批招聘已发布(59人)考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025昆明市滇池管理局引进高层次人才(1人)考前自测高频考点模拟试题(含答案详解)
- 2025河南郑州师范学院诚聘高层次人才考前自测高频考点模拟试题及答案详解(网校专用)
- 班组安全培训评语课件
- 2025年固态变压器(SST)行业研究报告及未来发展趋势预测
- 承包商全流程安全培训
- 养生店国庆节活动方案
- 古代文学史杜牧课件
- 7.1促进民族团结 课件 2025-2026学年统编版道德与法治九年级上册
- 西宁市供热管理暂行办法
- 静脉血栓护理课件
- 造口患者叙事护理
- 二年级数学上册100道口算题(全册11份)
- 中医学专业职业生涯规划书2300字数
- 租赁沐足店合同协议书
评论
0/150
提交评论