




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷循化撒拉族自治县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 过抛物线y=x2上的点的切线的倾斜角( )A30B45C60D1352 数列1,的前100项的和等于( )ABCD3 已知变量x与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A =0.2x+3.3B =0.4x+1.5C =2x3.2D =2x+8.64 已知M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则实数a的取值范围为( )A(,1)B(,1C(,0)D(,05 已知函数,则曲线在点处切线的斜率为( )A1 B C2 D6 下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.7 下列函数中,与函数的奇偶性、单调性相同的是( )A B C D8 设、是两个不同的平面,l、m为两条不同的直线,命题p:若平面,l,m,则lm;命题q:l,ml,m,则,则下列命题为真命题的是( )Ap或qBp且qCp或qDp且q9 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长等于( )A2 B3 C4 D与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种11定义在R上的奇函数f(x)满足f(x+3)=f(x),当0x1时,f(x)=2x,则f (2015)=( )A2B2CD 12已知直线的参数方程为(为参数,为直线的倾斜角),以原点O为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当最小时,的值为( )A B C D二、填空题13已知,则函数的解析式为_.14如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈依此类推,第8圈的长为 15调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元16如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是17【盐城中学2018届高三上第一次阶段性考试】函数f(x)=xlnx的单调减区间为 18已知函数为定义在区间2a,3a1上的奇函数,则a+b=三、解答题19甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛现已比赛了4场,且甲篮球队胜3场已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为()求甲队分别以4:2,4:3获胜的概率;()设X表示决出冠军时比赛的场数,求X的分布列及数学期望20(本小题满分12分)设函数.(1)当时,求不等式的解集;(2)当时,恒成立,求实数的取值范围21A=x|x23x+2=0,B=x|ax2=0,若BA,求a22(本小题满分12分)在中,角所对的边分别为,()求的值; ()若,求的面积23在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为(sin+cos)=1,曲线C2的参数方程为(为参数)()求曲线C1的直角坐标方程与曲线C2的普通方程;()试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由 24设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证: (3)设数列满足(),若数列是递增数列,求实数的取值范围。循化撒拉族自治县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:y=x2的导数为y=2x,在点的切线的斜率为k=2=1,设所求切线的倾斜角为(0180),由k=tan=1,解得=45故选:B【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题2 【答案】A【解析】解:=1故选A3 【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3, =2.7,代入A成立,代入D不成立故选:A4 【答案】D【解析】解:如图,M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则a0实数a的取值范围为(,0故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题5 【答案】A【解析】试题分析:由已知得,则,所以考点:1、复合函数;2、导数的几何意义.6 【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.7 【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性8 【答案】 C【解析】解:在长方体ABCDA1B1C1D1中命题p:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足,l,m,而m与l异面,故命题p不正确;p正确;命题q:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足l,ml,m,而,故命题q不正确;q正确;故选C【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力9 【答案】A【解析】过作垂直于轴于,设,则,在中,为圆的半径,为的一半,因此又点在抛物线上,.10【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式11【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(36721)=f(1);又因为函数f(x)是定义R上的奇函数,当0x1时,f(x)=2x,所以f(1)=f(1)=2,即f(2015)=2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f(36721)=f(1)12【答案】A 【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系在直角坐标系中,圆的方程为,直线的普通方程为,直线过定点,点在圆的内部当最小时,直线直线,直线的斜率为,选A二、填空题13【答案】【解析】试题分析:由题意得,令,则,则,所以函数的解析式为.考点:函数的解析式.14【答案】63 【解析】解:第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23第n圈长为:n+(2n1)+2n+2n+n=8n1故n=8时,第8圈的长为63,故答案为:63【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形15【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题16【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题17【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系18【答案】2 【解析】解:f(x)是定义在2a,3a1上奇函数,定义域关于原点对称,即2a+3a1=0,a=1,函数为奇函数,f(x)=,即b2x1=b+2x,b=1即a+b=2,故答案为:2三、解答题19【答案】 【解析】解:()设甲队以4:2,4:3获胜的事件分别为A,B,甲队第5,6场获胜的概率均为,第7场获胜的概率为,甲队以4:2,4:3获胜的概率分别为和()随机变量X的可能取值为5,6,7,P(X=6)=,P(X=7)=,随机变量X的分布列为 X 5 6 7p【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力20【答案】(1);(2)【解析】试题分析:(1)由于原不等式的解集为;(2)由设,原命题转化为又且考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为,解得;第二小题利用数学结合思想和转化思想,将原命题转化为 ,进而求得:21【答案】 【解析】解:解:集合A=x|x23x+2=0=1,2BA,(1)B=时,a=0(2)当B=1时,a=2(3)当B=2时,a=1故a值为:2或1或022【答案】【解析】(本小题满分12分)解: ()由及正弦定理得, (3分),(6分)(), (8分), (10分)的面积为(12分)23【答案】 【解析】解:()由曲线C1的极坐标方程为(sin+cos)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(为参数),可得它的普通方程为+y2=1()把曲线C1与C2是联立方程组,化简可得 5x28x=0,显然=640,故曲线C1与C2是相交于两个点解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,)【点评】本题主要考查把极坐标方程化为直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 薄壁空心墩施工专项方案指南
- 牛津树-自然拼读-等级2-level 2 -U1-Lesson2
- 部编版三年级下册第三单元《纸的发明》教案
- 建筑施工特种作业-桥(门)式起重机司机真题库-3
- 建筑施工特种作业-建筑起重机械安装拆卸工(塔式起重机)真题库-10
- 日语基础阅读题目及答案
- 2023-2024学年山东省聊城市高二下学期期末教学质量抽测数学试题(解析版)
- 2023-2024学年河南省濮阳市高二下学期期末学业质量监测数学试题(解析版)
- 回复函建议意见
- 饱和蒸汽压力温度热焓对照表
- 无人机驾驶员雇佣合同协议
- 湖南省长沙市华益中学2023-2024学年八年级下学期期末考试英语试卷(含答案)
- 海南省琼海市2023-2024学年七年级下学期期末考试历史试卷(含答案)
- 浙江宁波历年中考作文题与审题指导(2007-2021)
- 儿童乐园用工合同范本
- 小儿烫伤个案护理
- 山东省肥城市2025年化学高二下期末监测试题含解析
- 冶金天车作业安全培训
- (重庆康德三诊)2025年重庆市高三第三次联合诊断检测政治试卷(含答案解析)
- (人教版)2025年中考化学真题试题(含解析)
- 煤炭行业的企业战略布局与资源整合考核试卷
评论
0/150
提交评论