




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷托克托县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若a0,b0,a+b=1,则y=+的最小值是( )A2B3C4D52 线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对3 在ABC中,若2cosCsinA=sinB,则ABC的形状是( )A直角三角形B等边三角形C等腰直角三角形D等腰三角形4 若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )Af(x)为奇函数Bf(x)为偶函数Cf(x)+1为奇函数Df(x)+1为偶函数5 复数(为虚数单位),则的共轭复数为( ) A B C D【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力6 函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )Aa0,b0,c0,d0Ba0,b0,c0,d0Ca0,b0,c0,d0Da0,b0,c0,d07 如图,四面体DABC的体积为,且满足ACB=60,BC=1,AD+=2,则四面体DABC中最长棱的长度为( )AB2CD38 若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD9 在长方体ABCDA1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )ABCD 10在二项式的展开式中,含x4的项的系数是( )A10B10C5D511若直线上存在点满足约束条件则实数的最大值为 A、 B、 C、 D、12若f(x)=x2+2ax与g(x)=在区间1,2上都是减函数,则a的取值范围是( )A(,1B0,1C(2,1)(1,1D(,2)(1,1二、填空题13抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=14已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力15若数列满足,则数列的通项公式为 .16某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)17定义某种运算,S=ab的运算原理如图;则式子53+24=18已知f(x)=,则ff(0)=三、解答题19设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 20已知f(x)=x3+3ax2+bx在x=1时有极值为0(1)求常数 a,b的值; (2)求f(x)在2,的最值21已知函数f(x)=|2x+1|,g(x)=|x|+a()当a=0时,解不等式f(x)g(x);()若存在xR,使得f(x)g(x)成立,求实数a的取值范围 22某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)23(本小题满分10分)选修44:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数)(I)点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C的参数方程;(II)设直线与曲线有两个不同的交点,求直线的斜率的取值范围24在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值托克托县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:a0,b0,a+b=1,y=+=(a+b)=2+=4,当且仅当a=b=时取等号y=+的最小值是4故选:C【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题2 【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上3 【答案】D【解析】解:A+B+C=180,sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,sinCcosAsinAcosC=0,即sin(CA)=0,A=C 即为等腰三角形故选:D【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础4 【答案】C【解析】解:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,令x1=x2=0,得f(0)=1令x1=x,x2=x,得f(0)=f(x)+f(x)+1,f(x)+1=f(x)1=f(x)+1,f(x)+1为奇函数故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答5 【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.6 【答案】A【解析】解:f(0)=d0,排除D,当x+时,y+,a0,排除C,函数的导数f(x)=3ax2+2bx+c,则f(x)=0有两个不同的正实根,则x1+x2=0且x1x2=0,(a0),b0,c0,方法2:f(x)=3ax2+2bx+c,由图象知当当xx1时函数递增,当x1xx2时函数递减,则f(x)对应的图象开口向上,则a0,且x1+x2=0且x1x2=0,(a0),b0,c0,故选:A7 【答案】 B【解析】解:因为AD(BCACsin60)VDABC=,BC=1,即AD1,因为2=AD+2=2,当且仅当AD=1时,等号成立,这时AC=,AD=1,且AD面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2故选B【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题8 【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力9 【答案】C【解析】解:如图,设A1C1B1D1=O1,B1D1A1O1,B1D1AA1,B1D1平面AA1O1,故平面AA1O1面AB1D1,交线为AO1,在面AA1O1内过B1作B1HAO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在RtA1O1A中,A1O1=,AO1=3,由A1O1A1A=hAO1,可得A1H=,故选:C【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题10【答案】B【解析】解:对于,对于103r=4,r=2,则x4的项的系数是C52(1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具11【答案】B【解析】如图,当直线经过函数的图象与直线的交点时,函数的图像仅有一个点在可行域内,由,得,12【答案】D【解析】解:函数f(x)=x2+2ax的对称轴为x=a,开口向下,单调间区间为a,+)又f(x)在区间1,2上是减函数,a1函数g(x)=在区间(,a)和(a,+)上均为减函数,g(x)=在区间1,2上是减函数,a2,或a1,即a2,或a1,综上得a(,2)(1,1,故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围二、填空题13【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键14【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得15【答案】 【解析】【解析】;故16【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 17【答案】14 【解析】解:有框图知S=ab=53+24=5(31)+4(21)=14故答案为14【点评】新定义题是近几年常考的题型,要重视解决新定义题关键是理解题中给的新定义18【答案】1 【解析】解:f(0)=01=1,ff(0)=f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用三、解答题19【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键20【答案】 【解析】解:(1)f(x)=x3+3ax2+bx,f(x)=3x2+6ax+b,又f(x)在x=1时有极值0,f(1)=0且f(1)=0,即36a+b=0且1+3ab=0,解得:a=,b=1 经检验,合题意(2)由(1)得f(x)=3x2+4x+1,令f(x)=0得x=或x=1,又f(2)=2,f()=,f(1)=0,f()=,f(x)max=0,f(x)min=221【答案】 【解析】解:()当a=0时,由f(x)g(x)得|2x+1|x,两边平方整理得3x2+4x+10,解得x1 或x原不等式的解集为 (,1,+) ()由f(x)g(x) 得 a|2x+1|x|,令 h(x)=|2x+1|x|,即 h(x)=,故 h(x)min=h()=,故可得到所求实数a的范围为,+)【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题 22【答案】 【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,(k1,k20;x0)由图知f(1)=,k1=又g(4)=,k2=从而f(x)=,g(x)=(x0)(2)设A产品投入x万元,则B产品投入10x万元,设企业的利润为y万元y=f(x)+g(10x)=,(0x10),令,(0t)当t=,ymax4,此时x=3.75当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题解题的关键是换元,利用二次函数的求最值的方法求解23【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力()设直线:与半圆相切时 ,(舍去)设点,故直线的斜率的取值范围为. 24【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 续费大单培训
- CVC置管的护理常规
- 肿瘤科护理科普要点解析
- 远程网幼儿园
- 乐高教育培训体系构建
- 2025年基因检测技术在遗传性疾病诊断准确率提升策略研究报告
- 机械装备制造业智能化升级成本效益分析与2025年市场发展报告
- 2025年交通运输与物流行业物流行业物流园区土地资源优化配置前景报告
- dNET肿瘤影像表现
- 广播媒体如何应对2025年融媒体转型中的版权挑战研究报告
- 大学生创新创业教育(2023秋学期)学习通超星期末考试答案章节答案2024年
- 中建2024装配式建筑+铝模一体化施工技术手册
- 农作物四级种子生产技术规程 第1部分:小麦DB41-T 293.1-2014
- TSG ZF001-2006《安全阀安全技术监察规程》
- 自动寻优控制系统在生料立磨中的应用实践
- 土地延期合同范本
- 四川省绵阳市涪城区2024-2025学年七年级上学期开学考试语文试题(解析版)
- DL∕T 796-2012 风力发电场安全规程
- 部编版八年级升九年级历史暑假预习知识清单(填空+答案)
- 四川省自贡市2023-2024学年七年级下学期期末数学试题(解析版)
- (正式版)JB∕T 11108-2024 建筑施工机械与设备 筒式柴油打桩锤
评论
0/150
提交评论