




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平顶山市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛物线的准线交于点,则的值是( )A B C D2 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM3 若等边三角形的边长为2,为的中点,且上一点满足,则当取最小值时,( )A6 B5 C4 D34 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D1505 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D66 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?7 已知函数f(x)=,则的值为( )ABC2D38 若函数y=x2+bx+3在0,+)上是单调函数,则有( )Ab0Bb0Cb0Db09 在中,角,的对边分别是,为边上的高,若,则到边的距离为( )A2 B3 C.1 D410已知向量=(1,3),=(x,2),且,则x=( )ABCD11函数y=|a|x(a0且a1)的图象可能是( )ABCD12将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )Ax=BCD二、填空题13已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 14已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则MNF的重心到准线距离为15已知面积为的ABC中,A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为16下列四个命题申是真命题的是(填所有真命题的序号)“pq为真”是“pq为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30的角;动圆P过定点A(2,0),且在定圆B:(x2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆17函数f(x)=2ax+13(a0,且a1)的图象经过的定点坐标是18过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是三、解答题19已知椭圆E: =1(ab0)的焦距为2,且该椭圆经过点()求椭圆E的方程;()经过点P(2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值20如图,点A是以线段BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P(1)求证:BF=EF;(2)求证:PA是圆O的切线21函数f(x)=sin2x+sinxcosx(1)求函数f(x)的递增区间;(2)当x0,时,求f(x)的值域22(本小题满分12分)已知函数(). (I)若,求的单调区间; (II)函数,若使得成立,求实数的取值范围.23(本小题满分10分)已知函数f(x)|xa|xb|,(a0,b0)(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x).24已知等差数列an的前n项和为Sn,公差d0,S2=4,且a2,a5,a14成等比数列()求数列an的通项公式;()从数列an中依次取出第2项,第4项,第8项,第2n项,按原来顺序组成一个新数列bn,记该数列的前n项和为Tn,求Tn的表达式平顶山市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.2 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B3 【答案】D【解析】试题分析:由题知,;设,则,可得,当取最小值时,最小值在时取到,此时,将代入,则.故本题答案选D.考点:1.向量的线性运算;2.基本不等式4 【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B5 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题6 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查7 【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A8 【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=为对称轴,若函数y=x2+bx+3在0,+)上单调递增函数,则0,解得:b0,故选:A【点评】本题考查二次函数的性质和应用,是基础题解题时要认真审题,仔细解答9 【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.10【答案】C【解析】解:,3x+2=0,解得x=故选:C【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题11【答案】D【解析】解:当|a|1时,函数为增函数,且过定点(0,1),因为011,故排除A,B当|a|1时且a0时,函数为减函数,且过定点(0,1),因为10,故排除C故选:D12【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx,再向右平移个单位得到y=cos(x),由(x)=k,得x=2k,即+2k,kZ,当k=0时,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键二、填空题13【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件14【答案】 【解析】解:F是抛物线y2=4x的焦点,F(1,0),准线方程x=1,设M(x1,y1),N(x2,y2),|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,MNF的重心的横坐标为,MNF的重心到准线距离为故答案为:【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离15【答案】 【解析】解:AD取最小时即ADBC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(2x,0),B(x,0)(其中x0),则=(2x,y),=(x,y),ABC的面积为,=18,=cos=9,2x2+y2=9,ADBC,S=xy=3,由得:x=,故答案为:【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识16【答案】 【解析】解:“pq为真”,则p,q同时为真命题,则“pq为真”,当p真q假时,满足pq为真,但pq为假,则“pq为真”是“pq为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为PABC,顶点P在底面的射影为O,则O为ABC的中心,PCO为侧棱与底面所成角正三棱锥的底面边长为3,CO=侧棱长为2,在直角POC中,tanPCO=侧棱与底面所成角的正切值为,即侧棱与底面所成角为30,故正确,如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故正确,故答案为:17【答案】(1,1) 【解析】解:由指数幂的性质可知,令x+1=0得x=1,此时f(1)=23=1,即函数f(x)的图象经过的定点坐标是(1,1),故答案为:(1,1)18【答案】 【解析】解:抛物线C方程为y2=4x,可得它的焦点为F(1,0),设直线l方程为y=k(x1),由,消去x得设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=4|AF|=3|BF|,y1+3y2=0,可得y1=3y2,代入得2y2=,且3y22=4,消去y2得k2=3,解之得k=故答案为:【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题三、解答题19【答案】 【解析】解:()由题意得,2c=2, =1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;()由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2k1矛盾当k10时,直线PM:y=k1(x+2);由得,(+4)y2=0;解得,yM=;M(,),同理N(,),由直线MN与y轴垂直,则=;(k2k1)(4k2k11)=0,k2k1=【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题20【答案】 【解析】证明:(1)BC是圆O的直径,BE是圆O的切线,EBBC又ADBC,ADBE可得BFCDGC,FECGAC,得G是AD的中点,即DG=AGBF=EF(2)连接AO,ABBC是圆O的直径,BAC=90由(1)得:在RtBAE中,F是斜边BE的中点,AF=FB=EF,可得FBA=FAB又OA=OB,ABO=BAOBE是圆O的切线,EBO=90,得EBO=FBA+ABO=FAB+BAO=FAO=90,PAOA,由圆的切线判定定理,得PA是圆O的切线【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题21【答案】 【解析】解:(1)(2分)令解得f(x)的递增区间为(6分)(2),(8分),(10分)f(x)的值域是(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力22【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力请23【答案】【解析】解:(1)由|xa|xb|(xa)(xb)|ab|得,当且仅当(xa)(xb)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书是我的朋友650字(8篇)
- 时间的测量课件
- 时间状语从句的课件
- 农产品收购及供应合同
- 汉字学习篇:唐诗三百首-小学语文课本语法与诗词教学教案
- 市场营销策略分析框架与执行方案模板
- 时钟课件模板
- 时尚定制家具知识培训班课件
- 医院护理服务合作合同
- 时代少年团课件
- 2025年电力交易员(高级工)考试复习题库(含答案)
- 2025北京广播电视台校园招聘17人笔试备考题库及参考答案详解
- 冷库安全基本知识培训课件
- DB11T 1481-2024 生产经营单位安全事故应急预案评审规范
- 澄海玩具行业出口中存在的问题及对策分析
- MIR睿工业:2025年中国协作机器人产业发展蓝皮书
- 工业园区集中供热配套建设项目可行性研究报告
- 2024-2030全球飞机拆解再制造行业调研及趋势分析报告
- 直销管理条例课件介绍
- 养老护理员职业道德培训
- 氧气安全培训课件
评论
0/150
提交评论