已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
主要内容,矩阵乘积的行列式,第三节 矩阵乘积的行列式与秩,矩阵乘积的秩,一、矩阵乘积的行列式,定理 1 设 A,B 是数域 P 上的两个 n n 矩,阵,那么,| AB | = | A | | B | , (1),即矩阵乘积的行列式等于它的因子的行列式的乘,证明,这个定理就是第二章第八节的,积.,用数学归纳法,定理 1 不难推广到多个因子的,情形,即有,推论 1 设A1, A2 , , Am是数域 P 上的 n n,矩阵,于是 | A1 A2 Am | = | A1 | | A2 | | Am | .,定义 9 数域 P 上的 n n 矩阵 A 称为非退,化的,如果 | A | 0;否则称为退化的.,显然,一 n n 矩阵是非退化的充分必要条件,是它的秩等于 n .,推论 2 设 A,B 是数域 P 上的 n n 矩阵,矩阵 AB 为退化的充分必要条件是 A,B 中至少有,一个是退化的.,二、矩阵乘积的秩,关于矩阵乘积的秩,我们有:,定理 2 设 A 是数域 P 上的 n m 矩阵,B 是,数域 P 上的 m s 矩阵,于是,秩( AB ) min 秩( A ) , 秩( B ) .,即乘积的秩不超过各因子的秩.,(2),证明,为了证明 (2),只需要证明,秩( AB ) 秩( A ) 与 秩( AB ) 秩( B ),同时成立即可.,现在来分别证明这两个不等式.,设,令 B1 , B2 , , Bm 表示 B 的行向量,C1 , C2 , , Cn,表示 AB 的行向量.,由计算可知,Ci 的第 j 个分量,和 ai1B1 + ai2B2 + + aimBm 的第 j 个分量都等于,因而,Ci = ai1B1 + ai2B2 + + aimBm (i = 1,2, , n),即矩阵 AB 的行向量组 C1 , C2 , Cn 可经 B 的行向,量组线性表出.,所以 AB 的秩不能超过 B 的秩,即,秩( AB ) 秩( B ) .,同样,令 A1 , A2 , , Am 表示 A 的列向量,D1 , D2, , Ds 表示 AB 的列向量.,由计算可知,,Di = b1iA1 + b2iA2 + + bmi Am (i = 1,2, , s).,这个式子表明,矩阵 AB 的列向量组可以经矩阵 A,的列向量组线性表出,因而前者的秩不可能超过后,者的秩,这就是说,,秩( AB ) 秩( A ) .,证毕,用数学归纳法,定理 2 不难推广到多个因子的,情形,即有,推论 3 如果 A = A1 A2 At , 那么,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回按钮.,本节内容已结束 ! 若想结束本堂课, 请单击返回
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机网络技术考试试题库含答案
- 2025年行业物联网应用推广项目可行性研究报告及总结分析
- 2025年互联网金融风险控制系统开发项目可行性研究报告及总结分析
- 2025年奇葩无领导面试题及答案
- 2025年高科技农业市场开发项目可行性研究报告及总结分析
- 2025年南通市海门市保安员招聘考试题库附答案解析
- 2025年旅游大巴司机安全操作模拟考试试卷含答案
- 计算机ms测试题及答案
- 2025年体育赛事智能管理系统项目可行性研究报告及总结分析
- AIDC电源行业市场前景及投资研究报告:柴油发电机供需错配量价空间国产重大机遇
- 贵州辅警面试题目及答案
- 仓储物流月工作总结
- 2025年门球一级裁判试题及答案
- 生产成本控制及核算数据表格模板
- 安全生产备案制度
- 2025年时事政治热点题库道及参考答案
- 部队地雷使用课件
- 二保焊理论考试题库及答案及
- 期末图形与几何专项测试卷(含答案)五年级数学上册(人教版)
- 高中政治学考课件
- 污水处理厂绩效考核评分细则
评论
0/150
提交评论