




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 (4) 纯滞后对象的控制算法,在工业生产的控制中,有许多控制对象含有较大的纯滞后特性。 被控对象的纯滞后时间使系统的稳定性降低,动态性能变坏,如容易引起超调和持续的振荡。 对象的纯滞后特性给控制器的设计带来困难。 大林(Dahlin)算法 纯滞后补偿控制史密斯(Smith)预估器,6.8 大林(Dahlin)算法,适用范围:被控对象具有大的纯滞后特性 对于具有较大纯滞后特性的控制对象,如果要求系统无超调量或超调量很小,并且允许有较长的调节时间,则大林算法的控制效果往往比PID等控制算法具有更好的效果。,一般具有纯滞后特性的被控对象可以用带纯滞后的一阶或二阶系统来描述。,(1) 被控对象的描述,被控对象如果可以用带有纯滞后环节e-s的一阶来近似,则其传递函数为:,如果可以用带滞后的二阶惯性环节来近似描述,即,其中:K 放大系数 ;纯滞后时间 T1,T2 惯性时间常数,(2)大林算法介绍,不论是对一阶惯性对象还是对二阶惯性对象,大林算法的设计目标都是:使闭环传递函数(s)相当于一个纯滞后环节和一个惯性环节的串联。,其中: 闭环系统的纯滞后环节的滞后时间与被控对象的纯滞后时间完全相同; 惯性时间常数为 T 按要求选择。 这样就能保证使系统不产生超调,同时保证其稳定性。, 采样周期选择,(3) 大林算法的离散化描述,对象的离散化 一阶对象的离散化 带零阶保持器对一阶对象进行离散化,得到广义对象的脉冲传递函数为,二阶对象的离散化 带零阶保持器对二阶对象进行离散化,得到具有纯滞后特性的二阶对象的脉冲传递函数为,式中系数, 闭环传递函数的离散化,前面已介绍过,大林算法的目的,是使闭环传函成为一个具有纯滞后特性的一阶环惯性环节,同样带零阶保持器用采样周期T对它进行离散化,其脉冲传递函数,如果对象脉冲传递函数为G(z),其闭环脉冲传递函数是我们按性能要求构造的,就是前面得到的(z)。这样我们就可以求出控制器D(z)。,我们需要求出D(z),完成控制器的设计,(4) 数字控制器设计,将前面的(z)带入,所以,只要知道了被控对象,就可以由上式确定控制器,使闭环系统满足我们的要求。,将我们要求的闭环脉冲传函(z)带入, 被控对象为带纯滞后的一阶惯性系统,带入D(z)中,得到,对象的脉冲传递函数,其中对于特定的对象,T1是确定不变的常数,T是选定的常数,T是采样周期也是选定的常数,因此,是一个常数系数,可以预先计算出,在控制程序中直接使用., 被控对象为带纯滞后的二阶惯性系统,对象的z传递函数为,将G(z)带入D(z)可以得到,(5)大林算法的主要步骤,选取期望的闭环传递函数 (z) 由公式(4.93)。主要确定闭环惯性时间常数T, 滞后时间就是对象的滞后时间。 根据被控装置的传递函数计算广义脉冲传递函数 G(z) 1阶对象由公式(4.95) 2阶对象由公式(4.97) 计算数字控制器脉冲传递函数 D(Z)1阶对象由公式(4.96) 2阶对象由公式(4.98) 有了D(z),就可以得到u(k)表达式就可以编写控制程序,例已知被控装置的传递函数为,试采用大林算法,确定数字控制器。,解:采样周期为滞后时间即 T=1s,(T=/N N=1), 选取期望闭环传递函数为,离散化后的脉冲传递函数,根据被控对象的脉冲传递函数、所选择的闭环脉冲传递函数,利用公式(4.94)求D(z),被控装置广义脉冲传递函数,将G(z)带入得到,可以求出y(kT) u(kT) 该系统在单位阶跃输入输入时系统的输出y(kT) ,控制器的输出 u(kT) 的点所描绘出曲线。,u(kT) 以二倍采样周期大幅度摆动。 y(kT) 由于系统自身的惯性,不会这样大幅度摆动。 这种现象叫做振铃现象,简称振铃 这种现象对系统不利。,(6) 振铃现象及其消除,所谓振铃(Ringing)现象,是指数字控制器的输出以二分之一采样频率大幅度衰减的振荡。 振铃现象中的振荡是衰减的。 由于被控对象中惯性环节的低通特性,使得这种振荡对系统的输出影响较小。但是振铃现象却会增加执行机构的磨损,在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳定性。,振铃现象与最小拍系统的纹波是不一样的纹波是指输出在采样点上误差,而在采样点之间是有偏差的,输出有纹波。, 振铃现象的分析,系统的输出Y(z)和数字控制器的输出U(z)间有下列关系,由上面两式得到数字控制器的输出U(z)与输入函数的R(z)之间的关系为,系统的输出Y(z)和输入函数R(z)之间有下列关系,令,由上面两式得到数字控制器的输出U(z)与输入函数的R(z)之间的关系为,u(z) 是分析振铃的基础。,对于单位阶跃输入函数,对于阶跃输入,含有z=1的极点。 如果u(z)的极点在z平面的负实轴上,且与z=1点相近,那么数字控制器D(z)的输出序列u(k)中将含有这两种幅值相近的瞬态项,而且瞬态项的符号在不同时刻是不同的。 当两瞬态项符号相同时,数字控制器的输出控制作用加强,符号相反时,控制作用减弱,从而造成数字控制器的输出序列大幅度波动。 分析u(z)在z平面负实轴上的极点分布情况,就可分析振铃现象的有关情况。,带纯滞后的一阶惯性环节,极点,它总是大于0没有振铃现象,带纯滞后的二阶惯性环节,将公式(4.104)写成一般形式,有两个极点,Z1不会产生振铃现象,但,因此,z2可能出现在Z平面负实轴的单位圆上,或非常靠近这一点。 Z2会产生振铃现象。, 振铃幅度RA,用振铃幅度RA来衡量振铃强烈的程度。 为描述振铃强烈的程度,应找出数字控制器输出量的最大值umax。 由于这一最大值与系统参数的关系难于用解析的式子描述出来,所以常用单位阶跃作用下数字控制器第0次输出量与第1次输出量的差值来衡量振铃现象强烈的程度。 振铃幅度定义:控制器在单位阶跃输入作用下,第0次输出幅度与第一次输出幅度的差。,对于前面讨论的带纯滞后的二阶惯性环节,将公式(4.104)写成一般形式,RA为第0次输出与第一次输出之差,经整理,带入公式4.104的系数,根据公式(4.98)和(4.99),*, 振铃现象的消除,有两种方法可用来消除振铃现象 找出D(z)中引起振铃现象的因子(z=-1附近的极点),然后令其中的z=1。 根据终值定理,这样处理不影响输出量的稳态值。 例如:,0.98这个极点: 用z=1带入,选择合适的采样周期T及系统闭环时间常数T,使得数字控制器的输出避免产生强烈的振铃现象 实际上也是通过选择合适的T和T ,调整D(z)的极点。,Z=1带入, 振铃现象示例,已知被控装置的传递函数为,用大林算法确定的数字控制器为,被控装置广义脉冲传递函数,由于D(z)在z平面的左半平面有靠近z=-1的两个极点 z=-0.6321,z=-0.7919 对于单位阶跃输入数字控制器的输出将产生振铃现象。,按消除振铃现象的第一种方法,令z=-0.6321 和z=-0.7919两个极点项中的z=1。,这时,将消除振铃现象。 消除振铃现象后的y(kT)和u(kT)如下,带入Z=1, 具有纯滞后系统的数字控制器直接设计的步骤,根据系统的性能,确定闭环系统的参数Tc,给出振铃幅度RA的指标 根据振铃幅度RA与采样周期T的关系,解出给定振铃幅度下对应的采样周期T,如果T有多解,则选择较大的采样周期 确定纯滞后时间与采样周期之比的最大整数N 求广义对象的脉冲传递函数G(z)及闭环系统的脉冲传递函数(z) 求数字控制器的脉冲传递函数D(z),6.9 史密斯(Smith)预估控制,设被控对象传递函数为,史密斯预估器的原理:与D(s)并联一个补偿环节,用来补偿对象中的纯滞后环节。 这个补偿环节叫做预估器。 它的传递函数:,GP(s)是G(s)中不含纯滞后特性的部分,由预估器与D(s)组成总的补偿控制器(简称补偿器),增加补偿环节后的结构图,经过补偿后的闭环传递函数,经过补偿后的闭环系统,因其滞后特性e-s相当于已到了闭环回路之外,它相当于下面的系统,它不影响系统的稳定性,只是将y1(t)后移了一段时间。其控制性能相当于无滞后系统,具有纯滞后补偿的数字控制器,(1) 史密斯预估器
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中科学探究:科学探究与TiO₂石墨烯光催化技术实验的结合教学论文
- 绘本教学在小学英语课堂中的创新与挑战研究论文
- 智能家居节能技术在智能家居产品中的市场竞争力分析论文
- 艺术班培训管理制度
- 芽苗菜栽培管理制度
- 茶叶类门店管理制度
- 除雪剂使用管理制度
- 访问控制策略安全评估
- 财务会计建筑业会计科目
- 大班幼儿散文诗四季的礼物
- 备战中考生物专项练习题-心脏和血液循环(全国通用-含答案)-
- 《国际汉语教师证书》考试汉办真题
- 室内装修工程应急预案范本
- 往年广东中考高频词汇总结范文(全国中考阅读及完型高频词)
- 学校(幼儿园)每周食品安全排查治理报告(整学期16篇)
- 延期交房起诉状开发商违约金起诉状
- 心内科用药安全管理课件
- GB/T 20453-2022柿子产品质量等级
- 赣美2011版三年级美术下册《瓜果飘香》教案及教学反思
- 维修改造工程施工组织设计
- 执行力案例分享与解析课件
评论
0/150
提交评论