右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex12 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是( )A1a2B3a6Ca3或a6Da1或a23 已知命题“p:x0,lnxx”,则p为( )Ax0,lnxxBx0,lnxxCx0,lnxxDx0,lnxx4 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD5 直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )Axy+1=0,2xy=0Bxy1=0,x2y=0Cx+y+1=0,2x+y=0Dxy+1=0,x+2y=06 下列关系式中,正确的是( )A0B00C00D=07 若,且,则与的值分别为( )AB5,2CD5,28 在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)9 若函数是偶函数,则函数的图象的对称轴方程是( )111.ComA B C D10已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,711已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )A B C或 D或12给出下列命题:多面体是若干个平面多边形所围成的图形;有一个平面是多边形,其余各面是三角形的几何体是棱锥;有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台其中正确命题的个数是( )A0 B1 C2 D3二、填空题13【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是 14= .15定义在上的可导函数,已知的图象如图所示,则的增区间是 xy121O16幂函数在区间上是增函数,则 17已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=18在三棱柱ABCA1B1C1中,底面为棱长为1的正三角形,侧棱AA1底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为,则sin的值是三、解答题19若点(p,q),在|p|3,|q|3中按均匀分布出现(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2pxq2+1=0有两个实数根的概率20在锐角ABC中,角A、B、C的对边分别为a、b、c,且()求角B的大小;()若b=6,a+c=8,求ABC的面积21本小题满分12分 已知数列中,其前项和满足.求数列的通项公式; 若,设数列的前的和为,当为何值时,有最大值,并求最大值. 22已知定义在区间(0,+)上的函数f(x)满足f()=f(x1)f(x2)(1)求f(1)的值;(2)若当x1时,有f(x)0求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=1,求f(x)在3,25上的最小值23如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥ABCDE,使AC=(1)证明:平面AED平面BCDE;(2)求二面角EACB的余弦值 24已知函数f(x)=(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值 右玉县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D2 【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题3 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:x0,lnxx”,则p为x0,lnxx故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查4 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A5 【答案】C【解析】解:圆x2+y22x+4y=0化为:圆(x1)2+(y+2)2=5,圆的圆心坐标(1,2),半径为,直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点或者直线经过圆心,直线的斜率为1,直线l的方程是:y+2=(x1),2x+y=0,即x+y+1=0,2x+y=0故选:C【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题6 【答案】C【解析】解:对于A0,用“”不对,对于B和C,元素0与集合0用“”连接,故C正确;对于D,空集没有任何元素,0有一个元素,故不正确7 【答案】A【解析】解:由,得又,解得故选:A【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题8 【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力9 【答案】A【解析】试题分析:函数向右平移个单位得出的图象,又是偶函数,对称轴方程为,的对称轴方程为.故选A考点:函数的对称性.10【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础11【答案】【解析】试题分析:程序是分段函数 ,当时,解得,当时,解得,所以输入的是或,故选D.考点:1.分段函数;2.程序框图.1111112【答案】B【解析】111试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B考点:几何体的结构特征二、填空题13【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线的下方.因为,故当时,函数单调递减; 当时,函数单调递增;故,而当时,故当且,解之得,应填答案.考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.14【答案】【解析】试题分析:原式=。考点:指、对数运算。15【答案】(,2)【解析】试题分析:由,所以的增区间是(,2)考点:函数单调区间16【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数当是分数时,一般将其先化为根式,再判断;(2)若幂函数在上单调递增,则,若在上单调递减,则;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 117【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题18【答案】 【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AEBOAC,侧棱AA1底面ABC,三棱柱ABCA1B1C1是直棱柱由直棱柱的性质可得:BO侧面ACC1A1四边形BODE是矩形DE侧面ACC1A1DAE是AD与平面AA1C1C所成的角,为,DE=OBAD=在RtADE中,sin=故答案为:【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:(1)根据题意,点(p,q),在|p|3,|q|3中,即在如图的正方形区域,其中p、q都是整数的点有66=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1x3,1y3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|3,|q|3表示如图的正方形区域,易得其面积为36;若方程x2+2pxq2+1=0有两个实数根,则有=(2p)24(q2+1)0,解可得p2+q21,为如图所示正方形中圆以外的区域,其面积为36,即方程x2+2pxq2+1=0有两个实数根的概率,P2=【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点20【答案】 【解析】解:()由2bsinA=a,以及正弦定理,得sinB=,又B为锐角,B=,()由余弦定理b2=a2+c22accosB,a2+c2ac=36,a+c=8,ac=,SABC=21【答案】【解析】由题意知, 即 检验知n=1, 2时,结论也成立,故an=2n+1 由 法一: 当时,;当时,;当时, 故时,达最大值,. 法二:可利用等差数列的求和公式求解22【答案】 【解析】解:(1)令x1=x20,代入得f(1)=f(x1)f(x1)=0,故f(1)=0(4分)(2)证明:任取x1,x2(0,+),且x1x2,则1,由于当x1时,f(x)0,所以f()0,即f(x1)f(x2)0,因此f(x1)f(x2),所以函数f(x)在区间(0,+)上是单调递减函数(8分)(3)因为f(x)在(0,+)上是单调递减函数,所以f(x)在3,25上的最小值为f(25)由f()=f(x1)f(x2)得,f(5)=f()=f(25)f(5),而f(5)=1,所以f(25)=2即f(x)在3,25上的最小值为2(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键23【答案】 【解析】(1)证明:取ED的中点为O,由题意可得AED为等边三角形,AC2=AO2+OC2,AOOC,又AOED,EDOC=O,AO面ECD,又AOAED,平面AED平面BCDE;(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,1,0),A(0,0,),C(,0,0),B(,2,0),设面EAC的法向量为,面BAC的法向量为由,得,由,得,二面角EACB的余弦值为2016年

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论