泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数y=ax+2(a0且a1)图象一定过点( )A(0,1)B(0,3)C(1,0)D(3,0)2 利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%3 设集合M=x|x1,P=x|x26x+9=0,则下列关系中正确的是( )AM=PBPMCMPDMP=R4 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A9B11C13D155 数列1,的前100项的和等于( )ABCD6 已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A89B76C77D357 下列命题中正确的是( )(A)若为真命题,则为真命题( B ) “,”是“”的充分必要条件 (C) 命题“若,则或”的逆否命题为“若或,则”(D) 命题,使得,则,使得8 若函数f(x)=3|x1|+m的图象与x轴没有交点,则实数m的取值范围是( )Am0或m1Bm0或m1Cm1或m0Dm1或m09 已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD310极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,则|PQ|的最小值为( )A1BCD211=( )AiBiC1+iD1i12已知变量x与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A =0.2x+3.3B =0.4x+1.5C =2x3.2D =2x+8.6二、填空题13设满足约束条件,则的最大值是_14当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是15如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是16甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为17若直线ykx1=0(kR)与椭圆恒有公共点,则m的取值范围是18在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为三、解答题19已知函数f(x)=lg(x25x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合AB,AB 20已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB平面ABCD,E,F,G分别是线段AB,CD,PD上的点(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由点H到点F的距离与点H到直线AB的距离之差大于4;GHPD21已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离22某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率23某单位为了了解用电量y度与气温x之间的关系,随机统计了某4天的用电量与当天气温气温()141286用电量(度)22263438(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10时的用电量附:回归直线的斜率和截距的最小二乘法估计公式分别为: =, =24已知函数的定义域为集合,(1)求,;(2)若,求实数的取值范围.泌阳县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由于函数y=ax (a0且a1)图象一定过点(0,1),故函数y=ax+2(a0且a1)图象一定过点(0,3),故选B【点评】本题主要考查指数函数的单调性和特殊点,属于基础题2 【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目3 【答案】B【解析】解:P=x|x=3,M=x|x1;PM故选B4 【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答5 【答案】A【解析】解:=1故选A6 【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2)a2+sin2=2a2=4一般地,当n=2k1(kN*)时,a2k+1=1+cos2a2k1+sin2=a2k1+1,即a2k+1a2k1=1所以数列a2k1是首项为1、公差为1的等差数列,因此a2k1=k当n=2k(kN*)时,a2k+2=(1+cos2)a2k+sin2=2a2k所以数列a2k是首项为2、公比为2的等比数列,因此a2k=2k该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C7 【答案】D 【解析】对选项A,因为为真命题,所以中至少有一个真命题,若一真一假,则为假命题,故选项A错误;对于选项B,的充分必要条件是同号,故选项B错误;命题“若,则或”的逆否命题为“若且,则”,故选项C错误;故选D8 【答案】A【解析】解:函数f(x)=3|x1|+m的图象与x轴没有交点,m=3|x1|无解,|x1|0,03|x1|1,m0或m1,解得m0或m1故选:A9 【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查10【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1故选:A【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查11【答案】 B【解析】解: =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力12【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3, =2.7,代入A成立,代入D不成立故选:A二、填空题13【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划14【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:215【答案】甲 【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= (8790)2+(8990)2+(9090)2+(9190)2+(9390)2=4;乙的平均数是=(78+88+89+96+99)=90,方差是= (7890)2+(8890)2+(8990)2+(9690)2+(9990)2=53.2;,成绩较为稳定的是甲【解法二】根据茎叶图中的数据知,甲的5个数据分布在8793之间,分布相对集中些,方差小些;乙的5个数据分布在7899之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些故答案为:甲【点评】本题考查了平均数与方差的计算与应用问题,是基础题目16【答案】A 【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A故答案为:A【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题17【答案】1,5)(5,+) 【解析】解:整理直线方程得y1=kx,直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y1即是y21得到m1椭圆方程中,m5m的范围是1,5)(5,+)故答案为1,5)(5,+)【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观18【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题三、解答题19【答案】【解析】解:(1)由x25x+60,即(x2)(x3)0,解得:x3或x2,即A=x|x3或x2,由g(x)=,得到10,当x0时,整理得:4x0,即x4;当x0时,整理得:4x0,无解,综上,不等式的解集为0x4,即B=x|0x4;(2)A=x|x3或x2,B=x|0x4,AB=R,AB=x|0x2或3x4【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键20【答案】 【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,取CF的中点为K,连结PK,BK,则GF为DPK的中位线,PKGF,PK平面EFG,PK平面EFG,四边形EBKF为平行四边形,BKEF,BK平面EFG,BK平面EFG,PKBK=K,平面EFG平面PKB,又PB平面PKB,PB平面EFG(2)解:连结PE,则PEAB,平面PAB平面ABCD,平面PAB平面ABCD=AB,PE平面PAB,PE平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,P(0,0,),D(1,4,0),=(1,4,),P(0,0,),D(1,4,0),=(1,4,),=(,),G(,),设点H(x,y,0),且1x1,0y4,依题意得:,x216y,(1x1),(i)又=(x+,y,),GHPD,x+4y,即y=,(ii)把(ii)代入(i),得:3x212x440,解得x2+或x2,满足条件的点H必在矩形ABCD内,则有1x1,矩形ABCD内不能找到点H,使之同时满足点H到点F的距离与点H到直线AB的距离之差大于4,GHPD【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识21【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题22【答案】 【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为年龄大于50岁的约有(人)(3)抽取节能意识强的5人中,年龄在20至50岁的(人),年龄大于50岁的51=4人,记这5人分别为a,B1,B2,B3,B4从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)故所求概率为23【答案】 【解析】解:(1)由表可得:;又;,;线性回

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论