




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
组别:第六组组员:苏琳伟、陈治、陈家和、陈硅报告人:陈硅学号:10349069词汇&释义:Parafilm 封口膜Chloroform 氯仿(三氯甲烷)Isopropanol 异丙醇DEPC 焦碳酸二乙酯TRIZOL a mono-phasic solution of phenol and guanidine isothiocyanatePhenol 苯酚isthiocyanate 异硫氰酸胍MCS multiple cloning site (polycloning site)注:MSC是DNA载体序列上人工合成的一段序列,含有多个限制内切酶识别位点。能为外源DNA提供多种可插入的位置或插入方案。实验任务: 1. 从猪肌肉纤维中提取RNA;2. 2对RNA上EGFP基因密码子片段进行RT-PCR扩增;3. 将经RT-PCR技术扩增的cDNA与插入载体质粒,并将其转化入大肠杆菌进行克隆;4. 从大肠杆菌中提取含目的基因的载体质粒。实验目的: 1.掌握提取纯化总RNA的原理和技术; 2.掌握RT-PCR原理和技术; 3.掌握TA克隆原理和技术。实验原理:A 总RNA提取和纯化RNA 分离的最关键因素是尽量减少RNA 酶的污染。但RNA 酶活性非常稳定,分布广泛,除细胞内源性RNA 酶外,环境中也存在大量RNA 酶。因此在提取RNA 时,应尽量创造一个无RNA 酶的环境,包括去除外源性RNA 酶污染和抑制内源性RNA 酶活性,主要是采用焦碳酸二乙酯(DEPC)去除外源性RNA 酶,通过RNA 酶的阻抑蛋白Rnasin 和强力的蛋白质变性剂如异硫氰酸胍抑制内源性RNA 酶。Trizol试剂是直接从细胞或组织中提取总RNA的试剂,是一种由苯酚和异硫氰酸胍组成的单相溶液它在破碎和溶解细胞时能保持RNA的完整性,裂解细胞并释放出RNA,酸性条件使RNA与DNA分离,加入氯仿后离心,样品分成水样层和有机层。RNA存在于水样层中。收集上面的的水样层后,RNA可以通过异丙醇沉淀来还原。在除去水样层后,样品中的DNA和蛋白也能相继以沉淀的方式还原。乙醇沉淀能析出中间层的DNA,在有机层中加入异丙醇能沉淀出蛋白。共纯化DNA对于样品间标准化RNA的产量十分有用。无论是人、动物、植物还是细菌组织,各种样品最大使用量(1ml Trizol),动物组织( 50mg),植物组织(100 mg),丝状真菌( 100mg),动物细胞(51061107),酵母(1107) 。TRIZOL试剂能促进不同种属不同分子量大小的多种RNA的析出。例如,从大鼠肝脏抽提的RNA琼脂糖凝胶电泳并用溴化乙啶染色,可见许多介于7 kb和15 kb之间不连续的高分子量条带,(mRNA和hnRNA成分)两条优势核糖体RNA条带位于5 kb (28S)和2 kb (18S),低分子量RNA介于0.1 和 0.3 kb之间 (tRNA, 5S)。当抽提的RNA用TE稀释时其A260/A280比值1.8 。Rnase 污染的10大来源 1:手指头 2:枪头 3:水/缓冲液4:实验台面 5:内源 Rnase 6:RNA 样品7:质粒抽提 8:RNA 保存 9:阳离子 (Ca, Mg) 10:后续实验所用的酶 RNA提取须杜绝外源酶的污染,实验时应注意一严格戴好口罩,手套。 二实验所涉及的离心管,Tip 头,移液器杆,电泳槽,实验台面等要彻底处理。 三实验所涉及的试剂/溶液,尤其是水,必须确保 RNase-Free。 RNA纯化流程图(附:上清不含DNA的原因:1.因为细胞中存在DNA酶,在提取之前细胞破碎的时候没有加DNA酶抑制剂,DNA已经被分解了。2.上层水相,PH 5.1左右,当溶液pH在酸性的时候,DNA分子就会沉淀在酚与溶液的界面,只有RNA分子留在水相。而当pH接近中性时,DNA就会溶解在水相,(导致PH中性的大概原因是trizol与样品比例不对,应该尽量保证提取量的前提下使trizol过量)RNA纯化要求1 纯化后不应存在对酶(如逆转录酶)有抑制作用物质2 排除有机溶剂和金属离子的污染3 蛋白质、多糖和脂类分子等的污染降低到最低程度4 排除DNA分子的污染BRT-PCR一、知识背景:1、基因表达:DNA RNA Protein单拷贝基因表达存在逐步放大机制,如一个蚕丝心蛋白基因104 个丝心蛋白mRNA(每个mRNA 存活4d,可以合成105 个丝心蛋白) 共合成109 个丝心蛋白。因此单拷贝基因的mRNA 表达水平对于其功能水平的调控是非常重要的。2、PCR 技术(olymerase chain reaction):即聚合酶链式反应。在模板、引物和四种脱氧核苷酸存在的条件下依赖于DNA 聚合酶的酶促反应,其特异性由两个人工合成的引物序列决定。反应分三步:a、变性:通过加热使DNA 双螺旋的氢键断裂,形成单链DNA;b、退火:将反应混合液冷却至某一温度,使引物与模板结合。c、延伸:在DNA 聚合酶和dNTPs 及Mg2存在下,退火引物沿5 3方向延伸。以上三步为一个循环,如此反复。3、逆转录酶和RT-PCR逆转录酶(reverse transcriptase)是存在于RNA 病毒体内的依赖RNA 的DNA 聚合酶,至少具有以下三种活性:1、依赖RNA 的DNA 聚合酶活性:以RNA 为模板合成cDNA 第一条链;2、Rnase 水解活性:水解RNANA 杂合体中的RNA;3、依赖DNA 的DNA 聚合酶活性:以第一条DNA 链为模板合成互补的双链cDNA.二、RT-PCR 的准备:1、引物的设计及其原则:1)引物的特异性决定PCR 反应特异性。因此引物设计是否合理对于整个实验有着至关重要的影响。在引物设计时要充分考虑到可能存在的同源序列,同种蛋白的不同亚型,不同的mRNA 剪切方式以及可能存在的hnRNA 对引物的特异性的影响。尽量选择覆盖相连两个内含子的引物,或者在目的蛋白表达过程中特异存在而在其他亚型中不存在的内含子。2)引物设计原则的把握:引物设计原则包括a、引物长度:一般为1530bp ,引物太短会影响PCR 的特异性,引物太长PCR 的最适延伸温度会超过Taq 酶的最适温度,也影响反应的特异性。b、碱基分布:四种碱基最好应随机分布,避免嘌呤或嘧啶的聚集存在,特别是连续出现3 个以上的单一碱基。GC 含量(Tm 值):4060,PCR 扩增的复性温度一般是较低Tm 值减去510 度。c、3端要求:3端必须与模板严格互补,不能进行任何修饰,也不能有形成任何二级结构的可能。末位碱基是A 时错配的引发效率最低,G、C 居中间,因此引物的3端最好选用A、G、C 而尽可能避免连续出现两个以上的T。d、引物自身二级结构:引物自身不应存在互补序列,否则会自身折叠成发夹状结构或引物自身复性。e、引物之间的二级结构:两引物之间不应有多于4 个连续碱基互补,3端不应超过2 个。f、同源序列:引物与非特异扩增序列的同源性应小于连续8 个的互补碱基存在。g、5端无严格限制:5末端碱基可以游离,但最好是G 或C,使PCR 产物的末端结合稳定。还可以进行特异修饰(标记、酶切位点等)等等。根据实验目的选择适当的引物。常用引物设计软件如Primer5.0,Oligo6.0 等对于这些条件都可以自行设置。二步法RT-PCR反应流程图示一部法RT-PCR反应流程图示CTA克隆a质粒的基本特性1质粒的复制通常一个质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区(整个遗传单位定义为复制子)。在不同的质粒中,复制起始区的组成方式是不同的,有的可决定复制的方式,如滚环复制和 复制。在大肠杆菌中使用的大多数载体都带有一个来源于 pMB1 质粒或 ColE1 质粒的复制起始位点。图 3-1 是其复制其始示意图。 在复制时,首先合成前 RNA ,即前引物,并与 DNA 形成杂交体;而后 RNase H 切割前 RNA ,使之成为成熟的 RNA ,并形成三叶草二级结构,该引物引导质粒的复制。形成的 RNA 可控制 RNA 形成二级结构,同时 Rop 增强 RNA 的作用,从而控制质粒的拷贝数。削弱 RNA 和 RNA 之间相互作用的突变,将增加带有 pMB1 或(ColE1)复制子的拷贝数。 图 带 pMB1(或 ColE1) 复制起点的质粒在复制起始阶段所产生的转录的方向及其粗略大小。 滚环复制:滚环式复制(rolling circle replication)是噬菌体中常见的DNA复制方式。许多病毒DNA的复制、质粒、F因子在接合(conufgation)转移时其DNA的复制,以及许多基因扩增时都采用这种方式。在以这种机制进行的复制中,亲代双链DNA的一条链在DNA复制起点处被切开,其5端游离出来。这样,DNA聚合酶便可以将脱氧核糖核苷酸聚合在3-OH端。当复制向前进行时,亲代DNA上被切断的5端继续游离下来,并且很快被单链结合蛋白所结合。因为5端从环上向下解链的同时伴有环状双链DNA环绕其轴不断的旋转,而且以3-OH端为引物的DNA生长链则不断地以另一条环状DNA链为模板向前延伸,因而称为滚环复制。由于只有一条DNA链是完整的,因而在DNA解链时不会产生拓扑学上的问题,即未解链的双螺旋区不会产生超螺旋。当5-端从环上解下来后不久,即与单链结合蛋白结合,以后可移动的引发体便在其上形成,以引发RNA引物的合成,然后由DNA聚合酶催化合成冈崎片段。这个过程与前述的DNA滞后链的合成一样。最后由DNA聚合酶切除RNA引物,并填充间隙构成完整的DNA链。5端所以能从环上不断解链,主要是由于DNA聚合酶及引发体构成的复制体中的螺旋酶不停的向前移动所致。在这种复制方式中,DNA的延伸可以一直进行下去,产生的DNA链可以是亲代DNA单位长度的许多倍。这么长的DNA链是如何转变为单位长度的DNA分子的,目前尚不清楚。可能是由特异的内切酶切开产生单位长度的子代DNA。这些DNA可自身环绕,或保持线性分子状态。某些质粒进行的滚环复制与噬菌体进行的滚环复制并非完全的相同,它们至少存在以下几点差别:1.质粒在进行滚环复制时,正链和负链必须等量复制。2.具有两个复制起始区,即双链起始区和单链起始区,它们分别起动前导链(正链)和后随链(负链)的合成。滚环复制特点:1、以亲本链(+链)为模板合成互补的环状负链,形成闭合环状的复制形RF1;2、以成环滚环复制产生多个子代RF;3、以RF的负链为模板进行滚环复制产生多拷贝正链单环。滚环复质图示型复制DNA在复制原点解开成单链状态,分别作为模板,各自合成其互补链,则出现两个叉子状的生长点,叫做复制叉。复制过程中,由于形状像希腊字母,因而叫复制,又叫Cairns复制,其复制中间体称为Cairns分子。在复制中为双向复制。大多数生物为双向等速复制,也有少数双向不等速复制的情况。型复制图示2质粒的拷贝数质粒拷贝数分为严谨型与松驰型。严谨型质粒每个细胞中拷贝数有限,大约 1 几个;松驰型质粒拷贝数较多,可达几百。表 5-1 就是不同类的质粒与复制子及拷贝数的大致关系。表 3-1 :质粒载体及其拷贝数质粒 复制子 拷贝数 pBR322 及其衍生质粒 pMB1 1520 pUC 系列质粒及其衍生质粒 突变的 pMB1 500700 pACYC 及其衍生质粒 p15A10212pSC101 及其衍生质粒pSC101 5 ColE1ColE11520pUC 系列质粒的复制单位来自质粒 pMB1 ,但其拷贝数较高。 pMB1 质粒的复制并不需要质粒编码的功能蛋白,而是完全依靠宿主提供的半衰期较长的酶(DNA 聚合酶 ,DNA 聚合酶 ),依赖于 DNA 的 RNA 聚合酶,以及宿主基因 dnaB 、 dnaC 、 dnaD 和 danZ 的产物。因此,存在抑制蛋白质合成并阻断细菌染色体复制的氯霉素或壮观霉素等抗生素时,带有 pMB1(或 ColE1) 复制子的质粒将继续复制,最后每个细胞中可积聚 23 千个质粒。3质粒的不相容性 两个质粒在同一宿主中不能共存的现象称质粒的不相容性,它是指在第二个质粒导入后,在不涉及 DNA 限制系统时出现的现象。不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。两个不相容性质粒在同一个细胞中复制时,在分配到子细胞的过程中会竞争,随机挑选,微小的差异最终被放大,从而导致在子细胞中只含有其中一种质粒。而不相容群指那些具有不相容性的质粒组成的一个群体,一般具有相同的复制子。在大肠杆菌中现已发现 30 多个不相容群,如 ColE1 和 pMB1 , pSC101 和 p15A。4转移性 质粒具转移性。它是指在自然条件下,很多质粒可以通过称为细菌接合的作用转移到新宿主内。它需要移动基因 mob ,转移基因 tra ,顺式因子 bom 及其内部的转移缺口位点 nic。二、标记基因按其用途可将标记基因分为选择标记基因和筛选标记基因。选择标记用于鉴别目标 DNA (载体)的存在,将成功转化了载体的宿主挑选出来,筛选标记可用于将特殊表型的重组子挑选出来。(一) 选择标记抗生素抗性基因是目前使用最广泛的选择标记。1氨苄青霉素抗性基因(Ampicillin resistance gene, ampr)氨苄青霉素抗性基因是基因操作中使用最广泛的选择标记,绝大多数在大肠杆菌中克隆的质粒载体带有该基因。青霉素可抑制细胞壁肽聚糖的合成,与有关的酶结合并抑制其活性,抑制转肽反应。氨苄青霉素抗性基因编码一个酶,该酶可分泌进入细菌的周质区,抑制转肽反应并催化 -内酰胺环水解,从而解除了氨苄青霉素的毒性。青霉素是一类化合物的总称,其分子结构由侧链 R-CO- 和主核 6-氨基青霉烷酸(6-APA)两部分组成。在 6-APA 中有一个饱和的噻唑环(A)和一个 -内酰胺环, 6-APA 为由 L- 半脱氨酸和缬氨酸缩合成的二肽。 2四环素抗性基因(Tetracycline resistance gene,tetr)四环素可与核糖体 30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。四环素抗性基因编码一个由 399 个氨基酸组成的膜结合蛋白,可阻止四环素进入细胞。 pBR322 质粒除了带有氨苄青霉素抗性基因外,还带有四环素抗性基因。3氯霉素抗性基因(chloramphenicol resistance gene, Cmr, cat)氯霉素可与核糖体 50S 亚基结合并抑制蛋白质合成。目前使用的氯霉素抗性基因来源于转导性 P1 噬菌体(也携带 Tn9)。cat 基因编码氯霉素乙酰转移酶,一个四聚体细胞质蛋白(每个亚基 23kDa)。在乙酰辅酶 A 存在的条件下,该蛋白催化氯霉素形成氯霉素羟乙酰氧基衍生物,使之不能与核糖体结合。4卡那霉素和新霉素抗性基因(kanamycin/neomycin resistance gene, kanr, neor)卡那霉素和新霉素是一种脱氧链霉胺氮基糖苷,都可与核糖体结合并抑制蛋白质合成。 卡那霉素和新霉素抗性基因实际就是一种编码氨基糖苷磷酸转移酶(APH(3)-, 25kDa)的基因,氨基糖苷磷酸转移酶可使这两种抗生素磷酸化,从而干扰了它们向细胞内的主动转移。在细胞中合成的这种酶可以分泌至外周质腔,保护宿主不受这些抗生素的影响。5琥珀突变抑制基因 supF在基因的编码区中,若某个密码子发生突变后变成终止密码子,则称这样的突变为赭石突变(突变为 UAA),或琥珀突变(突变为 UAG),或乳白突变(突变为 UGA)。 supF 基因编码细菌的抑制性 tRNA ,可在 UAG 密码子上编译酪氨酸。如果在某一宿主中含具琥珀突变的 tetr 基因和 ampr 基因,只有当宿主含有 supF 基因时才会对 Amp 和 Tet 具有抗性。相应的, supE 基因在 UAG 密码子上编译谷氨酰氨。由于目前所用的标记基因使用方便,因此用这类标记的载体较少。6其它还有一些正向选择标记,表达一种使某些宿主菌致死的基因产物,而含有外源基因片段插入后,该基因便失活。如蔗糖致死基因 SacB ,来自淀粉水解芽胞杆菌 (Bacillus amyloliquefaciens) ,编码果聚糖蔗糖酶。在含蔗糖的培养基上 sacB 基因的表达对大肠杆菌来说是致死的,因此该基因可用于插入失活筛选重组子。(二)筛选标记筛选标记主要用来区别重组质粒与非重组质粒,当一个外源 DNA 片段插入到一个质粒载体上时,可通过该标记来筛选插入了外源片段的质粒,即重组质粒。1-互补(-complementation)-互补是指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的 -半乳糖苷酶( -galactosidase ,由 1024 个氨基酸组成)阴性的突变体之间实现互补。-互补是基于在两个不同的缺陷 -半乳糖苷酶之间可实现功能互补而建立的。大肠杆菌的乳糖 lac 操纵子中的 lacZ 基因编码 -半乳糖苷酶,如果 lacZ 基因发生突变,则不能合成有活性的 -半乳糖苷酶。例如, lacZM15 基因是缺失了编码 -半乳糖苷酶中第 11-41 个氨基酸的 lacZ 基因,无酶学活性。对于只编码 N-端 140 个氨基酸的 lacZ 基因 (称为 lacZ) ,其产物也没有酶学活性。但这两个无酶学活性的产物混合在一起时,可恢复 -半乳糖苷酶的活性,实现基因内互补。在 lacZ 编码区上游插入一小段 DNA 片段(如 51 个碱基对的多克隆位点),不影响 -半乳糖苷酶的功能内互补。但是,若在该 DNA 小片段中再插入一个片段,将几乎不可避免地导致产生无-互补能力的 -半乳糖苷酶片段。利用这一互补性质,可用于筛选在载体上插入了外源片段的重组质粒。在相应的载体系统中,lacZM15 放在 F 质粒上, 随宿主传代; lacZ 放在载体上, 作为筛选标记 (图 3-2) 。相应的受体菌有 JM 系列、 TG1 和 XL1-Blue ,前二者均带有 D (lac - proAB)F proAB + lacIq lacZD M15 基因型。其中 lacI 为 lac 阻抑物的编码基因,lacIq 突变使阻抑物产量增加,防止 lacZ 基因渗漏表达。lacZ 基因是乳糖 lac 操纵子中编码 -半乳糖苷酶的基因,乳糖及其衍生物可诱导其表达。 乳糖既是 lac 操纵子的诱导物,也是作用的底物。异丙基-D- 硫代半乳糖苷(IPTG)是乳糖的衍生物,可作为 lac 操纵子的诱导物,但不能作为反应的底物; 5-溴-4-氯-3-吲哚-D-半乳糖苷(X-gal) 可作为 lac 操纵子的底物,但不能作为诱导物。底物 X-gal 还可充作生色剂,被 -半乳糖苷酶分解后可产生兰色产物,可使菌落或噬菌斑呈兰色。 2插入失活通过插入失活进行筛选的质粒主要有 pBR322 ,该质粒具有四环素抗性基因(tetr)和氨苄青霉素抗性基因(ampr)两种抗性标记。当外源 DNA 片段插入 tetr 基因后,导致 tetr 基因失活,变成只对氨苄青霉素有抗性。这样就可通过对抗生素是双抗还是单抗来筛选是否有外源片段插入到载体中。三、质粒载体的种类(一)克隆载体克隆载体主要用于扩增或保存 DNA 片段,是最简单的载体。1pBR322pBR322 质粒的大小为 4361bp , GenBank 注册号为 V0lll9 和 J01749 ,含有 30 多个单一位点,具有四环素抗性基因(tetr)和氨苄青霉素抗性基因(ampr),其质粒复制区来自 pMB1 (如图 3-3)。目前使用广泛的多质粒载体几乎都是由此发展而来的。利用四环素抗性基因内部的 BamH 位点来插入外源 DNA 片段,可通过插入失活进行筛选。2pUC18 和 pUC19pUC18 和 pUC19 大小只有 2686bp ,是最常用的质粒载体,其结构组成紧凑,几乎不含多余的 DNA 片段,GenBank注册号为 L08752(pUC18)和 X02514(pUC19)。由 pBR322 改造而来,其中 lacZ (MSC) 来自 M13mp18/19 图 3-4 是其质粒图谱。这两个质粒的结构几乎是完全一样 的,只是多克隆位点的排列方向相反。这些质粒缺乏控制拷贝数的 rop 基因,因此其拷贝数达 500-700 。 pUC 系列载体含有一段 lacZ 蛋白氨基末端的部分编码序列,在特定的受体细胞中可表现 -互补作用。因此在多克隆位点中插入了外源片段后,可通过 -互补作用形成的蓝色和白色菌落筛选重组质粒。图 3-4 : pUC18/19 质粒图谱3pUC118 和 pUC 119由 pUC18/19 增加了一些功能片段改造而来,大小为 3162bp , GenBank 注册号为 U07649(pUC118)和 U07650(pUC119)。相当于在 pUC18/19 中增加了带有 M13 噬菌体 DNA 合成的起始与终止以及包装进入噬菌体颗粒所必需的顺式序列。4pGEM-3Z/4ZpGEM-3Z/4Z由pUC18/19 增加了一些功能片段改造而来,大小为 2.74kb, GenBank 注册号为 X65304(pGEM-3Z, 2743bp)和 X65305(pGEM-4Z, 2746)。与 pUC18/19 相比,在多克隆位点的两端添加了噬菌体的转录启动子,如 Sp6 和 T7 噬菌体的启动子。 pGEM-3Z 和 pGEM-4Z 的差别在于二者互换了两个启动子的位置。5多功能质粒载体在上述载体的基础上,人们设计出一些多功能的质粒载体,这类质粒载体综合了以上质粒的特点。除了作为质粒载体基本要素外,综合了上述功能要素,如多克隆位点、 -互补、噬菌体启动子和单链噬菌体的复制与包装信号。典型的这类质粒有 pBluescriptKS(),这类质粒一般由 4 个质粒组成一套系统,其差别在于多克隆位点方向相反(根据多克隆位点两端 Kpn 和 Sac 的顺序,用 KS 或 SK 表示),或单链噬菌体的复制启始方向相反(或者说,引导 DNA 双链中不同链合成单链 DNA ,用 + 或 - 表示), pBluescriptKS(+) 的 GenBank注册号为 X52327 。 pBluescriptKS() 的多克隆位点与 pUC18/19 的不同,且使用 f1 噬菌体的复制与包装信号序列,质粒图谱如图 3-5 。6表达载体该类载体是在常规克隆载体的基础上衍生而来的,主要增添了强启动子,以及有利于表达产物分泌、分离或纯化的元件,有关本次实验使用的b本次实验所用pGEM-T Easy 载体的有关信息载体图谱 pGEM-T 载体和pGEM-T Easy 载体多克隆位点序列pGEM-T Easy 载体图和相关序列位点pGEM-T Easy 载体相关的序列位点T7 RNA 聚合酶转录起始位点 1多克隆位点区 10128SP6 RNA 聚合酶启动子(17 至3) 139158SP6 RNA 聚合酶转录起始位点 141pUC/M13 反向测序引物结合位点 176197lacZ 起始密码子 180lac 操纵子 200216内酰胺酶编码区 13372197噬菌体f1 区 23802835lac 操作子序列 28362996, 166395pUC/M13 正向测序引物结合位点 29562972T7 RNA 聚合酶启动子(17 至3) 29993pGEM-T 和pGEM-T Easy 载体的特殊应用1PCR 产物的克隆。2采用Erase-a-Base系统构建不定向巢式缺失体。3单链DNA 制备。4重组子的蓝白斑筛选。5利用双向启动子进行体外转录。注意平端PCR 产物(来自质粒载体说明书)具有校正活性的热稳定性DNA 聚合酶如Pfu DNA 聚合酶 (产品目录号:M7741),Pwo DNA 聚合酶,Tli DNA 聚合酶(目录号M7101)在进行PCR 扩增时产生平端PCR产物。这种平端PCR 产物可以通过加A 尾程序后(图4),连接到pGEM-T 和pGEM-TEasy 载体中(6)。采用这种方法连接,只有一个片段插入,而平端连接克隆可能产生多个插入。另外采用T 载体克隆不需要对载体去磷酸化,载体自连的背景很低。Pfu 和Tli DNA 聚合酶产生的PCR 产物经过加尾处理,并以理想载体:插入片段比例进行连接,可得到5595重组子(表2)。值得注意的是,PCR 产物有必要采用Wizard SV Gel and PCR Clean-Up System(d) (Cat.# A9281)进行PCR 产物直接纯化或凝胶纯化。若PCR 产物不进行纯化,Pfu、Pwo 和Tli DNA 聚合酶的校正活性在进行加尾反应或连接反应时,可降解PCR 片段的3-A 或除去加尾反应的载体的3-T突出端。为了提高克隆效率,应根据纯化PCR 产物的摩尔浓度调整加尾反应中的DNA 量和连接需要的体积。当PCR 产物片段小或扩增反应良好,产物的摩尔浓度高,加尾或连接反应需要的体积很小。相反,如果PCR 片段比较大或扩增不好,产物的摩尔浓度低,则需要较大的体积。我们已成功地用Taq DNA 聚合酶 对1-7l 纯化的平端PCR片段进行加尾反应,并优化插入片段:载体的连接比例,参见章节IV.C 详细讨论了插入片段:载体比例的优化。转化后采用蓝白斑筛选重组子,结果70100的重组子含有PCR 扩增的DNA 片段,而PCR 片段没有加尾的对照反应,只有很少的重组子。对照实验结果表明大多数pGEM-T Easy 载体含有3-T,并且Taq DNA 聚合酶可成功对大多数PCR 片段加上3-A。 优化插入片段和载体的摩尔比pGEM-T 和pGEM-T Easy 载体系统优化的插入DNA 对照片段和载体的摩尔比为1:1,采用8:1 到1:8 的连接比例也可成功进行连接。如果你的PCR 产物开始的连接不理想,则有必要优化连接比例。一般开始采用3:1 到1:3 的连接比例。PCR 产物的浓度可通过凝胶电泳上的DNA 分子量标准进行估计或采用荧光定量。pGEM-T 和pGEM-T Easy 载体大概3kb 大小,系统提供的载体浓度为50ng/l。计算连接反应中需要的PCR 产物的量可采用以下公式:加入载体的量(ng)插入片段大小(kb)载体大小kb插入片段和载体的摩尔比3:1=插入片段的量根据推荐的不同插入片段:载体比例加入足够的pGEM-T 和pGEM-T Easy载体进行连接,并进行对照反应。c 重组T质粒的构建外源DNA与载体分子的连接就是DNA重组,这样重新组合的DNA叫做重组体或重组子。重组的DNA分子是在DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA连接酶浓度或增加DNA浓度来提高平末端的连接效率。T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5磷酸基和3羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。因为DNA片断有两个端点,所以切割时出现两种可能,一种是单酶切,另一种是双酶切,这两种酶切方法在基因工程操作中都经常用到。对于单酶切来说,载体与供体的末端都相同,连接可以在任何末端之间进行,这样就导致了大量的自连接产物。为了减少自环的高本底,可对载体进行5除磷酸处理,原理是连接酶只能连接DNA片断的3OH末端与5端,所以除磷后载体不会自环。一旦有外源片断插入时,由外源片断提供5端就能与载体进行连接。通过这种方法可大大减少由载体的自 环造成的高本底。对于双酶切来说,无论载体与供体同一片段上都有不同的末端,这样就避免了载体与供体的自环,能使有效连接产物大大增加。双酶切的另一个特点是能将供体分子定向连接到载体上。 连接反应的温度在37时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16,连接12-16h(过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。Taq DNA酶扩增的PCR产物,其DNA双链前后末端都有一个游离的A碱基,可以与pGEM-T Easy Vector 末端游离的T碱基互补形成环状重组T质粒。d 质粒转化与筛选(1) 感受态细胞(Competent cells):受体细胞经过一些特殊方法(如CaCl,RuCl等化学试剂法)的处理后,细胞膜的通透性发生变化,成为能容许外源DNA的载体分子通过,进入感受态细胞(2) 转化(transformation):是将异源DNA分子引入一细胞株系,使受体细胞获得新的遗传性状的一种手段,是基因工程等研究领域的基本实验技术。注意: 转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变株。(3) 转化的方法:i化学方法(热击法):使用化学试剂(如CaCl2、RuCl等)制备的感受态细胞,通过热击处理将载体分子导入受体细胞; ii电转化法:使用低盐缓冲液或水洗制备的感受态细胞,通过高压麻脉冲的作用将载体DNA分子导入受体细胞。pGEM-T 和pGEM-T Easy 载体连接反应产物的转化步骤一定要使用高效率的感受态细胞(1108 cfu/g DNA)进行转化,因为采用单碱基突出端进行连接不是很有效,采用转化效率高的感受态细胞1108 cfu/g DNA(或更高)可得到合理的克隆菌数目(参见章节VI. E)。我们建议使用JM109 高效感受态细胞(产品目录号:L2001),pGEM-T 和pGEM-T Easy 载体系统提供这种感受态细胞。也可使用其他宿主菌,但是它们应该适合用蓝白斑及氨苄进行筛选。在使用JM109 制备感受态细胞前,JM109 应保存在含加维生素B1 的M9 基本培养基中,这有助于F因子的选择,F因子带有proAB 基因,这和脯氨酸营养缺陷型宿主菌(proAB 基因缺失)是互补的,携带的lacIqZM15 对于蓝白斑筛选是必需的。如果你不采用Promega 公司JM109 高效率感受态细胞,应按照后面的转化步骤进行操作。在LB/氨苄/IPTG/X-Gal 平板筛选转化子(参见章节XI. A),为得到理想的结果,最好不要使用放置超过1 个月的平板。筛选含插入片段的转化子插入片段成功克隆到pGEM-T 和pGEM-T Easy 载体中,可阻断 半乳糖苷酶的编码序列,因而重组克隆可在指示培养基上通过颜色进行筛选。然而连接到pGEM-T和pGEM-T Easy 载体的PCR 产物的特点对转化后蓝白斑克隆菌的比例影响很大。大多数情况下含有PCR 产物的克隆菌为白色,如果PCR 片段和LacZ 基因在同一读码框,则重组克隆菌可能为蓝色。这种DNA 片段碱基数是3 的整数倍(含3-A),并且读码框无终止密码子。据文献报道,在同一读码框内插入长达2kb 的DNA 片断,重组克隆菌仍可能为蓝色。即使PCR 产物不是3 的整数倍大小,由于扩增反应可引入突变(缺失或点突变),也可造成pGEM-T 和pGEM-T Easy 载体和片段连接转化后,重组克隆菌为蓝色。pGEM-T 和pGEM-T Easy 载体系统的对照DNA 为542bp,来源于Promega公司pGEM-luc(b,个g)DNA (Cat.#E1541),这个DNA 序列被引入突变,在6 个读码框中含有多个终止密码子,从而确保对照反应产生的蓝色克隆菌的背景数很低。由此可见,插入DNA 对照的结果不能代表你的PCR 产物的连接结果。(这就解释了为什么对菌落进行插入片段进行PCR扩增后进凝胶电泳分析是必要的。)E. 质粒提取细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染 色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制, 并通过细胞分裂传递到后代。质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质 粒DNA的提取,本实验采用碱裂解法提取质粒DNA。碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性 而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离 子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀 等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室 中常用。 一、试剂准备1. 溶液: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完 成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你, 只要用等体积的水,或LB培养基来悬浮菌体就可以了。NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性2. 溶液:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。这是用新鲜的0.4 N的NaOH和2的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱 性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复 性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千 万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA的断裂会带来麻烦。3. 溶液:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4保存备用。溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量 的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1的SDS溶液中慢慢加 入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量 要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度 的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质 沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被SDS给共沉淀了,尽管SDS并不与DNA分子结合。那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电 泳可以观察到一条浓浓的总DNA条带。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也 好,DNA分子在中性溶液中都是溶解的。NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液 III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。4. TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH2O至100ml。15 lbf/in2高压湿热灭菌20min,4保存备用。5.苯酚/氯仿 /异戊醇(25:24:1)不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳 定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。酚 (Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的 异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水 有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),因此如果单独用酚抽提后一定要用氯仿抽提一 次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。至于 异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。6.乙醇(无水乙醇、70%乙醇)回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。这时候如果放到20,时间一长反而会 导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉 淀。如果感觉发生了盐的沉淀,就用70的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。得到的质粒样品
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新零售模式线上线下融合方案
- 兼职工作协议的注意事项
- 企业市场分析中的数据挖掘技术
- 2025年世界顶级几何题目及答案
- 浸出生产车间考试试题及答案
- 分数通分试题及答案
- 2025年善意的谎言辩论材料
- 2025年山西省晋中市事业单位工勤技能考试题库及答案
- CN120246490A 仓储系统、货架机器人、换电机器人及换电方法 (杭州海康机器人股份有限公司)
- CN120127918B 一种伺服电机定子冲片自动化叠片机 (江苏联博精密科技股份有限公司)
- 高一英语练字字帖
- 学校食堂教师就餐付费记录表
- 第一章工程材料(机械制造基础)
- GB/T 40073-2021潜水器金属耐压壳外压强度试验方法
- GB/T 10079-2018活塞式单级制冷剂压缩机(组)
- 起重设备安装安全事故应急预案
- 教研组、备课组新学期教研组长会议课件讲义
- 体育社会学(绪论)卢元镇第四版课件
- 语言学纲要(新)课件
- 针灸治疗神经性耳鸣耳聋课件
- 《水工监测工》习题集最新测试题含答案
评论
0/150
提交评论