新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A钱B钱C钱D钱2 设集合,则( )ABCD3 如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD4 若函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,则有( )Aa1且b1Ba1且b0C0a1且b0D0a1且b05 是首项,公差的等差数列,如果,则序号等于( )A667B668C669D6706 已知f(x)是定义在R上周期为2的奇函数,当x(0,1)时,f(x)=3x1,则f(log35)=( )ABC4D7 在ABC中,已知a=2,b=6,A=30,则B=( )A60B120C120或60D458 已知集合,则满足条件的集合的个数为 A、 B、 C、 D、9 已知全集,集合,集合,则集合为( ) A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.10已知,若存在,使得,则的取值范围是( )A B C. D11已知椭圆,长轴在y轴上,若焦距为4,则m等于( )A4B5C7D812若如图程序执行的结果是10,则输入的x的值是( ) A0B10C10D10或10二、填空题13已知f(x)=,则f()+f()等于14若展开式中的系数为,则_【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想15若执行如图3所示的框图,输入,则输出的数等于 。16命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)17已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是18等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=三、解答题19已知a,b,c分别为ABC三个内角A,B,C的对边,c=asinCccosA(1)求A;(2)若a=2,ABC的面积为,求b,c20(本题满分12分)如图1在直角三角形ABC中,A=90,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将CDE沿DE折起,使点A在平面CDE内的射影恰好为M(I)求AM的长;()求面DCE与面BCE夹角的余弦值21已知条件,条件,且是的一个必要不充分条件,求实数的取值范围22已知等差数列an的首项和公差都为2,且a1、a8分别为等比数列bn的第一、第四项(1)求数列an、bn的通项公式;(2)设cn=,求cn的前n项和Sn23(本小题满分12分)1111已知函数(1)若,求函数的极值和单调区间;(2)若在区间上至少存在一点,使得成立,求实数的取值范围24已知函数(1)求f(x)的周期和及其图象的对称中心;(2)在ABC中,角A、B、C的对边分别是a、b、c,满足(2ac)cosB=bcosC,求函数f(A)的取值范围新华区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a2d,ad,a,a+d,a+2d,则由题意可知,a2d+ad=a+a+d+a+2d,即a=6d,又a2d+ad+a+a+d+a+2d=5a=5,a=1,则a2d=a2=故选:B2 【答案】C【解析】送分题,直接考察补集的概念,故选C。3 【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单4 【答案】B【解析】解:函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,根据图象的性质可得:a1,a0b10,即a1,b0,故选:B5 【答案】C【解析】由已知,由得,故选C答案:C 6 【答案】B【解析】解:f(x)是定义在R上周期为2的奇函数,f(log35)=f(log352)=f(log3),x(0,1)时,f(x)=3x1f(log3)故选:B7 【答案】C【解析】解:a=2,b=6,A=30,由正弦定理可得:sinB=,B(0,180),B=120或60故选:C8 【答案】D【解析】, ,可以为,9 【答案】C.【解析】由题意得,故选C.10【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小). 11【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m210m,即m6,解得m=8故选D【点评】本题主要考查了椭圆的简单性质要求学生对椭圆中对长轴和短轴即及焦距的关系要明了12【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x0,时x=10,解得:x=10当x0,时x=10,解得:x=10故选:D二、填空题13【答案】4 【解析】解:由分段函数可知f()=2=f()=f(+1)=f()=f()=f()=2=,f()+f()=+故答案为:414【答案】【解析】由题意,得,即,所以15【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。16【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键17【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键18【答案】2 【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q1时,得,即q23q+2=0,解得:q=2故答案为:2【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题三、解答题19【答案】 【解析】解:(1)c=asinCccosA,由正弦定理有:sinAsinCsinCcosAsinC=0,即sinC(sinAcosA1)=0,又,sinC0,所以sinAcosA1=0,即2sin(A)=1,所以A=;(2)SABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c22bccosA,即4=b2+c2bc,即有,解得b=c=220【答案】解:(I)由已知可得AMCD,又M为CD的中点,; 3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,5分设为面BCE的法向量,由可得=(1,2,),cos,=,面DCE与面BCE夹角的余弦值为 4分21【答案】【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由得,由得,当时,;当时,;当时, 由题意得,是的一个必要不充分条件,当时,满足条件;当时,得,当时,得 综上,考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题本题的解答是根据集合思想解不等式求解的.22【答案】 【解析】解:(1)由等差数列通项公式可知:an=2+(n1)2=2n,当n=1时,2b1=a1=2,b4=a8=16,3设等比数列bn的公比为q,则,4q=2,5 6(2)由(1)可知:log2bn+1=n79,cn的前n项和Sn,Sn=12【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题23【答案】(1)极小值为,单调递增区间为,单调递减区间为;(2)【解析】试题分析:(1)由令再利用导数工具可得:极小值和单调区间;(2)求导并令,再将命题转化为在区间上的最小值小于当,即时,恒成立,即在区间上单调递减,再利用导数工具对的取值进行分类讨论.111若,则对成立,所以在区间上单调递减,则在区间上的最小值为,显然,在区间的最小值小于0不成立若,即时,则有-0+极小值所以在区间上的最小值为,由,得,解得,即,综上,由可知,符合题意12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论