




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学设计与反思(3):平方差公式一、教材分析平方差公式是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.二、教学目标知识目标: 1经历探索平方差公式的过程 2会推导平方差公式,并能运用公式进行简单的运算能力目标:1、探索平方差公式的过程中,培养符号感和推理能力 2培养学生观察、归纳、概括的能力情感与价值观: 在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美三、教学过程(一)引出课题问题:计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= ;(2)(m+2)(m-2)= ;(3)= ;(4)(2x+1)(2x-1)= (通过对特的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式-平方差公式)(二)探索新知问题:依照以上四道题的计算回答下列问题: 式子的左边具有什么共同特征? 它们的结果有什么特征? 能不能用字母表示你的发现?师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:(在学生已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法平方差公式,这样更加自然、合理)(三)数形结合问题3:活动探究:将长为(a+b),宽为(ab)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系()通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系引导学生学会从多角度、多方面来思考问题对于任意的a、b,由学生运用多项式乘法计算:,验证了其公式的正确性)(四)总结归纳,发现新知问题4:你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差(鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力)(五)剖析公式在平方差公式中,其结构特征为:左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即;让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能代表数或式通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果(六)巩固运用问题5:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x3b); (2);(3)(m+n)(mn); (4);(5); (6)(学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件巩固平方差公式,进一步体会字母a、b可以是数,也可以是式,加深对字母含义广泛性的理解)问题6:判断下列计算是否正确: (1)(2a3b)(2a3b)=4a29b2 ( ) (2)(x+2)(x 2)=x22 ( )(3)(3a2)(3a2)=9a24 ( )(4) ( )对学生常出现的错误,作具体的分析,以加深学生对公式的理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件问题7:计算:(1)(2x +3)(3x3);(2)(b+2a)(2ab);(3)解:(1)(2x + 3)(2x 3)=(2x)232 = 4x 29 (2)(b+2a)(2ab) =(2a)2b2 =4a2b2(3)(七)拓展深化问题8:计算:(1)98(102); (2)问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积 运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习了有用的数学,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解问题10:这节课你有哪些收获?还有什么困惑?课后作业:一、选择题:1下列多项式乘法中,可以用平方差公式计算的是( )A.B.C. D.2下列计算中,结果正确的是( )A. B.254C. D.二、填空题:3计算: ;4计算:;5(_4b)(_+4b)=9a216b2三、计算:6.; 7.;8; 95347.四、解答题:10.已知:两个正方形的周长之和等于32cm,它们的面积之差为48cm2,求这两个正方形的边长四、教学反思 本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。学生刚接触这类乘法,对于公式中的字母a、b用其他代数式替换,学生很难理解,公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。 提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a-b)(a+b)=a2b2 ,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果.常见错误主要是:(1)判断不出哪些项是公式中的a,哪些项是公式中的b;(2)平方时忽视系数的平方,如(2m) 22m2 。平方差公式是乘法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 立即启动航空器应急预案(3篇)
- 2025至2030Spa大众和中档家具行业市场深度研究及发展前景投资可行性分析报告
- 拆违施工方案(3篇)
- 高速公路桥梁施工方案(3篇)
- 直播电商中市场定位的精准化对GMV增长的推动作用研究
- 2024年国家公务员考试申论真题及答案解析(地市级)
- (2024)卫生应急知识测试题及答案
- 消防站停电应急预案方案(3篇)
- 郑州启动防控应急预案了吗(3篇)
- 大理大学《港口海岸水工建筑物》2024-2025学年第一学期期末试卷
- 无呕吐病房的CINV管理
- 2025年福建南平市武夷山水茶业有限公司招聘笔试参考题库含答案解析
- 2025-2030年中国液压系统行业市场全景评估及未来趋势研判报告
- JCC工作循环检查流程与标准
- 牢记教师初心不忘育人使命作新时代合格人民教师课件
- 门窗工程采购相关知识
- 2025风电机组无人机巡检技术方案
- 浙江省台州市住在室内装修施工合同书
- 2025年高压电工资格考试国家总局模拟题库及答案(共四套)
- 《服务器安装与维护》课件
- 金蝶K3供应链操作手册
评论
0/150
提交评论