




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
- - 目 录 摘要 III 第 1 章 绪论 .- 1 - 1.1 人脸相似度检测技术的细节- 1 - 1.2 人脸相似度检测技术的广泛应用- 1 - 1.3 人脸相似度检测技术的难点- 2 - 1.4 国内外研究状况 .- 2 - 1.5 人脸相似度检测的研究内容- 3 - 1.5.1 人脸相似度检测研究内容 .- 3 - 1.5.2 人脸相似度检测系统的组成 .- 4 - 第 2 章 人脸相似度检测方法 .- 6 - 2.1 基于特征脸的方法- 6 - 2.2 基于神经网络的方法- 6 - 2.3 弹性图匹配法- 7 - 2.4 基于模板匹配的方法- 7 - 2.5 基于人脸特征的方法- 7 - 第 3 章 基于主元分析法人脸相似度检测方法 .- 9 - 3.1 引言 .- 9 - 3.2 主成分分析 .- 9 - 3.3 特征脸方法.- 11 - 第 4 章 仿真实验 - 13 - 4.1 流程图 - 13 - 4.2 仿真结果.- 14 - 第 5 章 总结与展望 - 15 - 5.1 总结 - 15 - 5.2 展望 - 15 - - -I 参考文献 .- 17 - 附录 .- 18 - - -II 摘要 人脸相似度检测是当前模式相似度检测领域的一个前沿课题,人脸相似度检测技术 就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的相似度检测信息,用 来“辨认”身份的技术。 本文介绍了多种人脸相似度检测方法,基于对人脸相似度检测方法优缺点的分析比 较, 提出了一种基于主元分析(PCA )的人脸相似度检测方法。通过PCA 算法对人脸图像 进行特征提取, 再利用最邻近距离分类法对特征向量进行分类相似度检测。利用剑桥ORL 的人脸数据库的数据进行实验仿真,仿真结果验证了本算法是有效的。 关键词:人脸相似度检测, 主元分析,最近邻距离分类法,人脸库 - - 0 - 第 1 章 绪论 人脸相似度检测是模式相似度检测研究的一个热点, 它在身份鉴别、信用卡相似度 检测, 护照的核对及监控系统等方面有着广泛的应用。人脸图像由于受光照、表情以及 姿态等因素的影响, 使得同一个人的脸像矩阵差异也比较大。因此, 进行人脸相似度检 测时, 所选取的特征必须对上述因素具备一定的稳定性和不变性. 主元分析(PCA)方法是 一种有效的特征提取方法,将人脸图像表示成一个列向量, 经过PCA 变换后, 不仅可以有 效地降低其维数, 同时又能保留所需要的相似度检测信息, 这些信息对光照、表情以及 姿态具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设计具有良好分类能 力和鲁棒性的分类器. 支持向量机(SVM ) 模式相似度检测方法,兼顾训练误差和泛化能 力, 在解决小样本、非线性及高维模式相似度检测问题中表现出许多特有的优势。 1.1 人脸相似度检测技术的细节 一般来说,人脸相似度检测系统包括图像提取、人脸定位、图形预处理、以及人脸 相似度检测(身份确认或者身份查找) 。系统输入一般是一张或者一系列含有未确定身份 的人脸图像,以及人脸数据库中的若干已知身份的人脸图像或者相应的编码,而其输出 则是一系列相似度得分,表明待相似度检测的人脸的身份。 1.2 人脸相似度检测技术的广泛应用 一项技术的问世和发展与人类的迫切需求是密切相关的,快速发展的社会经济和科 学技术使得人类对安全(包括人身安全、隐私保护等)得认识越来越重视。人脸相似度检 测得一个重要应用就是人类的身份相似度检测。一般来说,人类得身份相似度检测方式 分为三类: 1.特征物品,包括各种证件和凭证,如身份证、驾驶证、房门钥匙、印章等; 2.特殊知识,包括各种密码、口令和暗号等; 3.人类生物特征,包括各种人类得生理和行为特征,如人脸、指纹、手形、掌纹、虹膜、 DNA、签名、语音等。前两类相似度检测方式属于传统的身份相似度检测技术,其特点是 方便、快捷,但致命的缺点是安全性差、易伪造、易窃取。特殊物品可能会丢失、偷盗 和复制,特殊知识可以被遗忘、混淆和泄漏。相比较而言,由于生物特征使人的内在属 性,具有很强的自身稳定性和个体差异性,因此生物特征是身份相似度检测的最理想依 据。基于以上相对独特的生物特征,结合计算机技术,发展了众多的基于人类生物特征 - - 1 - 的身份相似度检测技术,如 DNA 相似度检测技术、指纹相似度检测技术、虹膜相似度检 测技术、语音相似度检测技术和人脸相似度检测技术等。 生物相似度检测技术在上个世纪已经有了一定得发展,其中指纹相似度检测技术已 经趋近成熟,但人脸相似度检测技术的研究还处于起步阶段。指纹、虹膜、掌纹等相似 度检测技术都需要被相似度检测者的配合,有的相似度检测技术还需要添置复杂昂贵的 设备。人脸相似度检测可以利用已有的照片或是摄像头远距离捕捉图像,无需特殊的采 集设备,系统的成本低。并且自动人脸相似度检测可以在当事人毫无觉察的情况下完成 身份确认相似度检测工作,这对反恐怖活动有非常重要的意义。基于人脸相似度检测技 术具有如此多的优势,因此它的应用前景非常广阔,已成为最具潜力的生物特征相似度 检测技术之一。 1.3 人脸相似度检测技术的难点 虽然人类可以毫不困难地根据人脸来辨别一个人,但是利用计算机进行完全自动的 人脸相似度检测仍然有许多困难。人脸模式差异性使得人脸相似度检测成为一个非常困 难的问题,表现在以下方面: 1.人脸表情复杂,人脸具有多样的变化能力,人的脸上分布着五十多块面部肌肉, 这些肌肉的运动导致不同面部表情的出现,会造成人脸特征的显著改变。 2.随着年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松弛使得人脸的结 构和纹理都将发生改变。 3.人脸有易变化的附加物,例如改变发型,留胡须,戴帽子或眼镜等饰物。 4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误相似度检测。 5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能造成图像的灰度。 1.4 国内外研究状况 人脸相似度检测是人类视觉最杰出的能力之一。它的研究涉及模式相似度检测、图 像处理、生物学、心理学、认知科学,与基于其它生物特征的身份鉴别方法以及计算机 人机感知交互领域都有密切联系。人脸相似度检测早在六七十年代就引起了研究者的强 烈兴趣。20 世纪 60 年代,Bledsoe 提出了人脸相似度检测的半自动系统模式与特征提取 方法。70 年代,美、英等发达国家开始重视人脸相似度检测的研究工作并取得进展。 1972 年,Harmon 用交互人脸相似度检测方法在理论上与实践上进行了详细的论述。同年, Sakai 设计了人脸图像自动相似度检测系统。80 年代初 T. Minami 研究出了优于 Sakai 的 - - 2 - 人脸图像自动相似度检测系统。但早期的人脸相似度检测一般都需要人的某些先验知识, 无法摆脱人的干预。进入九十年代,由于各方面对人脸相似度检测系统的迫切需求,人 脸相似度检测的研究变的非常热门。人脸相似度检测的方法有了重大突破,进入了真正 的机器自动相似度检测阶段,如 Karhunen-Love 变换等或新的神经网络技术。人脸相似 度检测研究得到了前所未有的重视,国际上发表有关人脸相似度检测等方面的论文数量 大幅度增加,仅从 1990 年到 2000 年之间,SCI 及 EI 可检索到的相关文献多达数千篇, 这期间关于人脸相似度检测的综述也屡屡可见。国外有许多学校在研究人脸相似度检测 技术,研究涉及的领域很广。这些研究受到军方、警方及大公司的高度重视和资助,国 内的一些知名院校也开始从事人脸相似度检测的研究。 人脸相似度检测是当前模式相似度检测领域的一个前沿课题,但目前人脸相似度检 测尚处于研究课题阶段,尚不是实用化领域的活跃课题。虽然人类可以毫不困难地由人 脸辨别一个人,但利用计算机进行完全自动的人脸相似度检测存在许多困难,其表现在: 人脸是非刚体,存在表情变化;人脸随年龄增长而变化;发型、眼镜等装饰对人脸造成 遮挡;人脸所成图像受光照、成像角度、成像距离等影响。人脸相似度检测的困难还在 于图像包括大量的数据,输入的像素可能成百上千,每个像素都含有各自不同的灰度级, 由此带来的计算的复杂度将会增加。现有的相似度检测方法中,通过从人脸图像中提取 出特征信息,来对数据库进行检索的方法速度快,而利用拓扑属性图匹配来确定匹配度 的方法则相对较快。 1.5 人脸相似度检测的研究内容 人脸相似度检测技术(AFR)就是利用计算机技术,根据数据库的人脸图像,分析提 取出有效的相似度检测信息,用来“辨认”身份的技术。人脸相似度检测技术的研究始于六 十年代末七十年代初,其研究领域涉及图像处理、计算机视觉、模式相似度检测、计算 机智能等领域,是伴随着现代化计算机技术、数据库技术发展起来的综合交叉学科。 1.5.1 人脸相似度检测研究内容 人脸相似度检测的研究范围广义上来讲大致包括以下五个方面的内容。 1.人脸定位和检测(Face Detection):即从动态的场景与复杂的背景中检测出人脸的 存在并且确定其位置,最后分离出来。这一任务主要受到光照、噪声、面部倾斜以及各 种各样遮挡的影响。 2.人脸表征(Face Representation)(也称人脸特征提取):即采用某种表示方法来表 示检测出人脸与数据库中的己知人脸。通常的表示方法包括几何特征(如欧氏距离、曲率、 - - 3 - 角度)、代数特征(如矩阵特征向量)、固定特征模板等。 3.人脸相似度检测(Face Recognition):即将待相似度检测的人脸与数据库中已知人 脸比较,得出 相关信息。这一过程的核心是选择适当的人脸表征方法与匹配策略。 4.表情姿态分析(Expression/Gesture Analysis):即对待相似度检测人脸的表情或 姿态信息进行分析,并对其加以归类。 5.生理分类(Physical Classification):即对待相似度检测人脸的生理特征进行分 析,得出其年龄、性别等相关信息,或者从几幅相关的图像推导出希望得到的人脸图像, 如从父母图像推导出孩子脸部图像和基于年龄增长的人脸图像估算等。 人脸相似度检测的研究内容,从生物特征技术的应用前景来分类,包括以下两个方 面:人脸验证与人脸相似度检测。 1.人脸验证(Face Verification/Authentication):即是回答“是不是某人?”的问 题。它是给定一幅待相似度检测人脸图像,判断它是否是某人的问题,属于一对一的两 类模式分类问题,主要用于安全系统的身份验证。 2.人脸相似度检测(Face Recognition):即是回答“是谁”的问题。它是给定一幅 待相似度检测人脸图像,再己有的人脸数据库中,判断它的身份的问题。它是个“一对 多”的多类模式分类问题,通常所说的人脸相似度检测即指此类问题,这也是本文的主 要研究内容。 1.5.2 人脸相似度检测系统的组成 在人脸相似度检测技术发展的几十年中,研究者们提出了多种多样的人脸相似度检 测方法,但大部分的人脸相似度检测系统主要由三部分组成:图像预处理、特征提取和人 脸的分类相似度检测。一个完整的自动人脸相似度检测系统还包括人脸检测定位和数据 库的组织等模块,如图 1.1。其中人脸检测和人脸相似度检测是整个自动人脸相似度检测 系统中非常重要的两个环节,并且相对独立。下面分别介绍这两个环节。 预处理特征提取分类相似度 检测 人脸检测人脸库 图 1.1 人脸相似度检测系统框图 - - 4 - 人脸检测与定位,检测图像中是否由人脸,若有,将其从背景中分割出来,并确定其在 图 像中的位置。在某些可以控制拍摄条件的场合,如警察拍罪犯照片时将人脸限定在标尺 内,此时人脸的定位很简单。证件照背景简单,定位比较容易。在另一些情况下,人脸 在图像 中的位置预先是未知的,比如在复杂背景下拍摄的照片,这时人脸的检测与定位将受以 下因素的影响: 1.人脸在图像中的位置、角度、不固定尺寸以及光照的影响; 2.发型、眼睛、胡须以及人脸的表情变化等; 3. 图像中的噪声等。 特征提取与人脸相似度检测,特征提取之前一般都要做几何归一化和灰度归一化的 工作。前者指根据人脸定位结果将图像中的人脸变化到同一位置和大小;后者是指对图像 进行光照补偿等处理,以克服光照变化的影响,光照补偿能够一定程度的克服光照变化 的影响而提高相似度检测率。提取出待相似度检测的人脸特征之后,即进行特征匹配。 这个过程是一对多或者一对一的匹配过程,前者是确定输入图像为图像库中的哪一个人 (即人脸相似度检测),后者是验证输入图像的人的身份是否属实(人脸验证)。 以上两个环节的独立性很强。在许多特定场合下人脸的检测与定位相对比较容易, 因此“特征提取与人脸相似度检测环节”得到了更广泛和深入的研究。近几年随着人们 越来越关心各种复杂的情形下的人脸自动相似度检测系统以及多功能感知研究的兴起, 人脸检测与定位才作为一个独立的模式相似度检测问题得到了较多的重视。本文主要研 究人脸的特征提取与分类相似度检测 的问题。 - - 5 - 已知人脸库 PCA 其他方法 KPCA LDA 输入新图 像 特征提取 特征提取 分类器设 计 分类决策 最近邻分 类器 SVM 分类 器 图 1.2 人脸相似度检测结构图 第 2 章 人脸相似度检测方法 虽然人脸相似度检测方法的分类标准可能有所不同,但是目前的研究主要有两个方 向,一类是从人脸图像整体(Holistic Approaches)出发,基于图像的总体信息进行分类相似 度检测,他重点考虑了模式的整体属性,其中较为著名的方法有:人工神经网络的方法、 统计模式的方法等。另一类是基于提取人脸图像的几何特征参数(Feature-Based Approaches),例如眼、嘴和鼻子的特征,再按照某种距离准则进行分类相似度检测。这 种方法非常有效,因为人脸不是刚体,有着复杂的表情,对其严格进行特征匹配会出现 困难。而分别介绍一些常用的方法,前两种方法属于从图像的整体方面进行研究,后三 种方法主要从提取图像的局部特征讲行研究。 - - 6 - 2.1 基于特征脸的方法 特征脸方法(eigenface)是从主元分析方法 PCA C Principal ComponentAnalysis 导出 的一种人脸分析相似度检测方法,它根据一组人脸图像构造主元子空间,由于主元具有 人脸的形状也称作特征脸。相似度检测时将测试图像投影到主元子空间上得到了一组投 影系数,然后和各个己知人的人脸图像进行比较相似度检测,取得了很好的相似度检测 效果。在此基础上出现了很多特征脸的改进算法。 特征脸方法原理简单、易于实现,它把人脸作为一个整体来处理,大大降低了相似 度检测复杂度。但是特征脸方法忽视了人脸的个性差异,存在着一定的理论缺陷。研究 表明:特征脸方法随光线角度及人脸尺寸的影响,相似度检测率会有所下降。 2.2 基于神经网络的方法 神经网络在人脸相似度检测应用中有很长的历史。早期用于人脸相似度检测的神经 网络主要是 Kohonen 自联想映射神经网络,用于人脸的“回忆”。所谓“回忆”是指当输入图 像上的人脸受噪声污染严重或部分缺损时,能用 Kohonen 网络恢复出原来完整的人脸。 Intrator 等人 用一个无监督/监督混合神经网络进行人脸相似度检测。其输入是原始图像的梯度图像, 以此可以去除光照的变化。监督学习目的是寻找类的特征,有监督学习的目的是减少训 练样本被错分的比例。这种网络提取的特征明显,相似度检测率高,如果用几个网络同 时运算,求其平均,相似度检测效果还会提高。 与其他类型的方法相比,神经网络方法在人脸相似度检测上有其独到的优势,它避 免了复杂的特征提取工作,可以通过学习的过程获得其他方法难以实现的关于人脸相似 度检测的规律和规则的隐性表达。此外,神经网络以时示方式处理信息,如果能用硬件 实现,就能显著提高速度。神经网络方法除了用于人脸相似度检测外,还适用于性别相 似度检测、种族相似度检测等。 2.3 弹性图匹配法 弹性图匹配方法是一种基于动态链接结构 DLA C Dynamic Link Architecture 的方法。 它将人脸用格状的稀疏图表示,图中的节点用图像位置的 Gabor 小波分解得到的特征向 量标记,图的边用连接节点的距离向量标记。匹配时,首先寻找与输入图像最相似的模 型图,再对图中的每个节点位置进行最佳匹配,这样产生一个变形图,其节点逼近模型 图的对应点的位置。弹性图匹配方法对光照、位移、旋转及尺度变化都敏感。此方法的 - - 7 - 主要缺点是对每个存储的人脸需计算其模型图,计算量大,存储量大。为此,Wiskott 在 原有方法的基础上提出聚束图匹配,部分克服了这些缺点。在聚束图中,所有节点都已 经定位在相应目标上。对于大量数据库,这样可以大大减少相似度检测时间。另外,利 用聚束图还能够匹配小同人的最相似特征,因此可以获得关于未知人的性别、胡须和眼 镜等相关信息。 2.4 基于模板匹配的方法 模板匹配法是一种经典的模式相似度检测方法,这种方法大多是用归一化和互相关, 直接计算两副图像之间的匹配程度。由于这种方法要求两副图像上的目标要有相同的尺 度、取向和光照条件,所以预处理要做尺度归一化和灰度归一化的工作。最简单的人脸 模板是将人脸看成一个椭圆,检测人脸也就是检测图像中的椭圆。另一种方法是将人脸 用一组独立的小模板表示,如眼睛模板、嘴巴模板、鼻子模板、眉毛模板和下巴模板等。 但这些模板的获得必须利用各个特征的轮廓,而传统的基于边缘提取的方法很难获得较 高的连续边缘。即使获得了可靠度高的边缘,也很难从中自动提取所需的特征量。模板 匹配方法在尺度、光照、旋转角度等各种条件稳定的状态下,它的相似度检测的效果优 于其它方法,但它对光照、旋转和表情变化比较敏感,影响了它的直接使用。 2.5 基于人脸特征的方法 人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构 上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几 何描述,可以作为人脸相似度检测的重要特征。几何特征最早是用于人脸检测轮廓的描 述与相似度检测,首先根据检测轮廓曲线确定若干显著点,并由这些显著点导出一组用 于相似度检测的特征度量如距离、角度等。采用几何特征进行正面人脸相似度检测一般 是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特 征。 定位眼睛往往是提取人脸几何特征的第一步。由于眼睛的对称性以及眼珠呈现为低 灰度值的圆形,因此在人脸图像清晰端正的时候,眼睛的提取是比较容易的。但是如果 人脸图像模糊,或者噪声很多,则往往需要利用更多的信息(如眼睛和眉毛、鼻子的相对 位置等),而且这将使得眼睛的定位变得很复杂。而且实际图像中,部件未必轮廓分明, 有时人用眼看也只是个大概,计算机提取就更成问题,因而导致描述同一个人的不同人 脸时,其模型参数可能相差很大,而失去相似度检测意义。尽管如此,在正确提取部件 - - 8 - 以及表情变化微小的前提下,该方法依然奏效,因此在许多方而仍可应用,如对标准身 份证照片的应用。 第 3 章 PCA 人脸相似度检测方法 3.1 引言 人脸相似度检测技术是指当输入一张正面人脸图像时,相似度检测该照片属于人脸库 的哪一个人。其可应用于会议入场系统、罪犯相似度检测及其它需要身份鉴别的场合。 由于人脸图像是一个复杂的对象,而且人脸会随着表情、姿态、角度、光照的不同而呈 现较大的不同,这些都增加了该问题的难度,使人脸相似度检测成为国际上的难点和热 点。解决人脸相似度检测的方法层出不穷,如基于几何特征的方法、基于代数特征的方 法等。主成分分析法(PCA)是把人脸图像看成高维向量,由于人脸图像的高度相关性,那 么可以通过 K-L 正交变换将其转化为低维空间的向量,后者最大限度地保留了原数据的 主要信息,是沿着其方差最大的方向求得的矢量。这样降维后的向量可以方便地用于模 式相似度检测。相似度检测方法是最邻近距离分类法。 3.2 主成分分析 主成分分析法是统计学中用来分析数据的一种方法,它基于 KL 分解。最早将其用于 人脸相似度检测中的是 Pentland,并因为它的有效很快流行起来。简单地说,它的原理就 - - 9 - 是将一高维的向量,通过一个特殊的特征向量矩阵,投影到一个低维的向征的向量和这 个特征向量矩阵,可以完全重构出所对应的原来的高维向量11。 对应到人脸相似度检测中,有如下的阐述: 对于一幅的图像,将其列排列起来形成一个列向量 v。假设人脸训练集中有 p mx n 幅图像,则这 p 个列向量罗列起来形成一个(m x n) x p 维的矩阵 X。 以 x 表示一幅图像的列向量。 则训练样本集的总体散布矩阵为: (3-1) p 1i T iit )x-)(xx-(xS 为对称阵,可进行如下分解: t S (3-2) T t RRS 对每一幅图像 xi进行变换(即在特征空间中进行投影),则 Y 的协方差矩 i T i XRY 阵为:; 故经过 PCA 变换去除了数据间的相关性,减小了冗余。diagRXXRYY ii TT 达到了降维的目的。 选取大的特征值,使总能量大于 90%,即将特征值按从大到小排序,为: ,选取前 k 个特征值对应的特征向量,这叫做主成分。记主 nk 21 成分矩阵为,则样本在该特征空间上的投影为: m U (3-3) XUW m 由前 m 个主轴决定的子空间能最大限度表达原始数据的变化,因为它在最小均方误 差意义下是数据的最优表达。这样,对于要测试的人脸,将其在该子空间上投影,得到 其坐标,和样本空间上各个人脸的坐标相比较,距离最近的即为该人脸的相似度检测结 果。在对进行分解时,由于其维数很大,故借助于奇异值分解定理12 。 t S 定理:设是一秩为 r 的 nr 维矩阵,则存在两个正交矩阵: A (3-4) rn 1r10 Ru,u,uU IUUT (3-5) rr 1r10 Rv,v,vV IVVT 以及对角阵 rr 1r10 R,diag (3-6) - - 10 - 且 (3-7) 1r21 满足 (3-8) T 2 1 VUA 其中: 为矩阵和的非零特征值,和分别为和 ) 1r , 1 , 0i ( i T AAAATi u i v T AA 对应于的特征向量。 AATi 推论 : (3-9) 2 1 AVU 可构造矩阵,容易求出此矩阵的特征值和特征向量,那么应用以上的推论, XXS T 即可得到所需的特征向量和特征值。 所选取的特征向量构成了特征脸空间,这是一个降维的子空间,所有的人脸图像都 可以在此空间上投影从而得到一组坐标系数,这组系数表明了该图像在子空间中的位置, 从而可以作为人脸相似度检测的依据。任何一幅人脸图像都可以表示为这组特征脸的线 性组合,其加权系数就是 K-L 变换的展开系数,也可以称为该图像的代数特征。 3.3 特征脸方法 特征脸方法(Eigenface) 是从主成分分析导出的一种人脸相似度检测和描述技术。 PCA 实质上是 K-L 展开的网络递推实现。K-L 变换是图像压缩技术中的一种最优正交变 换,其生成矩阵一般为训练样本的总体散布矩阵。特征脸方法就是将包含人脸的图像区 域看作是一种随机向量,因此可以采用 K-L 变换获得其正交 K-L 基底。对应其中较大特 征值的基底具有与人脸相似的形状,因此又称为特征脸(Eigenface)。利用这些基底的线形 组合可以描述,表达和逼近人脸图像,因此可以进行人脸的相似度检测与合成。相似度 检测过程就是将人脸图像映射到由特征脸张成的子空间上,比较其与己知人脸在特征脸 空间中的位置,具体步骤如下: 1.初始化,获得人脸图像的训练集并计算特征脸,定义为人脸空间; 2.输入新的人脸图像,将其映射到特征脸空间,得到一组权值; 3.通过检查图像与人脸空间的距离判断它是否为人脸; 4.若为人脸,根据权值模式判断它是否为数据库中的某个人; 5.若同一幅未知人脸出现数次,则计算其特征权值模式并加入到人脸数据库中。 - - 11 - 任何模式相似度检测系统都包括两个过程,一个是训练阶段(training process),另一 个是测试阶段(testing process),应用 PCA 的人脸相似度检测系统也不例外。假定在训练 阶段,数据库中有 K 个人,每个人有 M 幅人脸灰度图像,其中每一幅图像都用 N XN 的 二维数组 I (x,y)来表示,数组元素表示象素点的灰度值。同样,每一幅图像都可以视为 N 个 2x1 的向量。 从一个特征集中选择有利于分类的特征子集的过程称为特征选择。经特征选择后特 征空间的维数进一步得到压缩。特征选择也具有一些约束条件,如最小均方误差、总体 熵最小化等。 模式特征可以分为物理的、结构的和数字的三大类。本文中应用于判别研 究的模式特征是数字特征,这是由于计算机抽取数字特征方面的能力远远超过于人,这 些数字特征包括统计平均值、方差、协方差矩阵、和特征值、特征向量以及矩等。特征 提取所用的变换 T 就是基于 K-L 变换的 PCA 方法和 Fishe:判别方法,而特征选择的约 束条件就是最小均方误差。特征脸方法是一种简单,快速,实用的基于变换系数特征的 算法,它存在如下优点: (1)图像的原始灰度数据直接用来学习和相似度检测,不需任何低级或中级处理: (2)不需要人脸的几何和反射知识; (3)通过低维子空间表示对数据进行压缩; (4)与其他匹配方法相比,相似度检测简单有效。但是,由于特征脸方法在本质上依 赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有 着很大的局限性,表现在以下方面; (5)对尺度变化很敏感,因此在相似度检测前必须先进行尺度归一化处理,而且由于 PCA 在图像空间是线形的,它不能处理几何变化; (6)只能处理正面人脸图像,在姿态,发型和光照等发生变化时相似度检测率明显下 降; (7)要求背景单一,对于复杂变化背景,需首先进行复杂的图像分割处理; - - 12 - 第 4 章 仿真实验 4.1 流程图 图4.1 整体流程图 先确定训练样本和测试样本,之后经过PCA变换矩阵达到降维的目的,投影到降维子 空间中形成相应的坐标,最后用最邻近距离分类法进行相似度检测。 图 4.2 训练部分流程图 确定训练样本,之后去均值,计算总体散度矩阵,利用奇异值分解后经过PCA变换矩 阵达到降维的目的。 训练样本 总体散度矩阵 去均值 奇异值分解 PCA 变换矩阵 训练样本 测试模块 分类结果 测试样本PCA 变换矩阵 - - 13 - 4.2 仿真结果 实验在两个图库上测试,一个是自建人脸库,该库包含 10 个不同人物,每人有 5 张 不同表情和姿态下的图片,总共 50 幅。另一个是 ORL 人脸库,该库包含 40 个不同人物, 每人有 10 张图片,共 400 幅。用训练样本进行测试,识别率为 100%。而随着训练样本 的增加,识别率会有所提升,由于标准人脸库在采集时考虑了多种因素,人脸图像比较 标准,所以识别率较自建的人脸库识别率高,另外因为自建人连库的图片太少,即训练 样本太少,也会对结果产生影响,效果不是很好。进行直方图均衡化比灰度归一化的识 别率高,预处理对识别的效果起着至关重要的作用。而此次实验的预处理还比较粗糙, PCA 也只是起到了简单的特征脸降维的作用,要有更好的效果,还必须寻找更好的特征 表达,使得可以尽量消除光照、表情、遮掩和姿势的影响。 下图为测试流程截图: 图1 用户使用界面 - - 14 - 图2 图片选择后 - - 15 - 图3 查找后 第 5 章 总结与展望 5.1 总结总结 本文以人脸相似度检测算法中特征提取、分类器设计作了系统的研究,在理论、方 法和应用上进行了一系列探索,所取得的主要成果总结如下: 1.概述了人脸相似度检测技术应用的难点,发展与现状,研究内容与主要方法,及常 用的人脸相似度检测标准数据库。 2.论证了基于主分量分析和线性可分性分析的人脸相似度检测方法的优缺点,分析了 特征维数和训练样本个数对相似度检测性能的影响。 PCA 作为一种多元数据处理方法,它可以最优地表达原始数据,是满足最小均方误 差意义下的最优,可以表达原始数据的变化。 - - 16 - 但作为分类来讲,我们需要的是能将数据分开的最优的方向,考虑到数据的非线性, 可能不存在好的线性分类,故应改考虑核 PCA 方法,即 KPCA。现将低维数据映射到高 维特征空间中,在该特征空间中可以应用线性分类算法,这将是下一步要做的工作。 5.2 展望 人脸相似度检测系统其实是台特殊的摄像机,判断速度相当快,只需要0.01 秒 左右,由于利用的是人体骨骼的 相似度检测技术,所以即使易容改装,也难以蒙过它 的眼睛。而且 “人脸相似度检测系统”具有存储功能,只要把一些具有潜在危险性的 “重点人物”的“脸部特写”输入存储系统,重点人物如擅自闯关,就会在0.01 秒之内 被揪出来,同时向其他安保中心 “报警”。另外,某些重要区域如控制中心只允许特定 身份的工作人员进出,这时候面部档案信息未被系统存储的所有人全都会被拒之门外。 与以前的指纹相似度检测系统相比,人脸 相似度检测系统有很多的改进。用于人 脸相似度检测的摄像机一天 24 小时都可工作,第一它不侵犯人权,第二它是很安全 的,无论室内还是户外均可使用。人脸 相似度检测系统意味着每个人的脸上都贴着名 字,外人看不见,但监控系统能看得见。而且被观察的人不知道有设备在监视他,起 到了科技奥运、文明奥运的功能。 人脸的自动分割。人脸 相似度检测技术应该包括复杂背景下的人脸定位和纯脸分 割,以及人脸相似度检测两个方面的工作。要想使 人脸相似度检测技术得到广泛的发 展和应用,首先必须要解决人脸自动分割问题。而人脸的自动分割是一个很有挑战性的 研究课题。 基于代数特征的 人脸相似度检测方法。它的有点在于应用简单 ,算法稳健,随着 新的分类算法的出现 ,基于代数特征的 人脸相似度检测方法仍然有很大的发展空间。 基于多特征信息融合的方法。人脸面部的细节信息非常重要 ,对表情的相似度检 测起着极其重要的作用 , 如何充分利用人脸本身的丰富信息将是面部表情 相似度检测 研究一个值得探索的方向 。 基于多分类器融合的表情 相似度检测方法,由于不同的分类器想对于不同的特征 和环境有着不同的性能 , 研究一个良好的融合策略将是提高 人脸相似度检测系统的一 个很好的研究方向。 - - 17 - 参考文献 1张莹,李勇平,敖新宇.基于主元分析法的通用人脸检测模块设计J. 计算机工程与科 学,2011,01:97-101. 2陈志恒,姜明新.基于主元分析法的人脸检测系统的设计J. 电子设计工程, 2012,10:182-185. 3陆珂.基于主元分析法的人脸检测与跟踪算法研究D.华东理工大学,2015:16-18. 4赵黎.基于主元分析法的人脸检测系统设计与实现J. 科技信息(科学教研), 2008,18:351+403. 5肖贺.基于 MFC 的主元分析法视频人脸检测D.北京邮电大学无线通信技术研究室, 2015:2-3 6HongZiquan.AlgebraicFeatureExtractionofImagforRecognitionJPattern Recognition , 1991. 22(1):4344. 7 Yuille A L. Detection Templates for Face RecognitionJCognitive Neuroscience , 1991. 191200 8 卢春雨,张长水.局域区域特征的快速人脸检测法.J北京;清华大学学报.1999. 96(1);46. 9 陈刚,戚飞虎.实用人脸相似度检测系统的本征脸法实现.D2001年5月. 23(1): 4546 . 10 杜平,徐大为,刘重庆. 基于整体特征的人脸相似度检测方法的研究J.2003年6月. 49(3);382383. 11 Chow G, Li X. Towards A System for Automatic Facial Feature DetectionJ 1993. 29(3);23. 12 杨奕若,王煦法,杨未来.人脸全局特征相似度检测研究.Z1997年11月. 33(5): 871875. 13 边肇祺, 张学工, 阎平凡, 等. 模式相似度检测D. 北京: 清华大学出版社, 2000. 30(2)1617. 14 邓楠, 基于主成份分析的人脸识别. 2006.06. 15 龚勋, PCA 与人脸识别及其理论基础. 2007.04. - - 18 - 附录 matlabmatlab 源码源码 “读取图片读取图片”按钮按钮 function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %读取待查找图片 global im;%由于要在两个按钮函数中使用,故使用全局变量 filename, pathname=. uigetfile(*.bmp,选择图片); str = pathname, filename;%合成路径+文件名 im = imread(str);%读取图片 axes( handles.axes1);%使用第一个 axes imshow(im);title(待查找)%显示图片 “开始查找开始查找”按钮按钮 function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % PCA 人脸识别 global im;%使用全局变量 imgdata=;%训练图像矩阵 - - 19 - for i=1:10 for j=1:5 a=imread(strcat(C:UsersThinkDesktoporlpractice,num2str(i),num2str (j),.bmp); b=a(1:112*92); % b 是行矢量 1N,其中 N10304 b=double(b); imgdata=imgdata; b; % imgdata 是一个 M * N 矩阵,imgdata 中每一行数据一 张图片,M50 end; end; img
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医药企业研发外包(CRO)模式下的药物研发合作与协同创新报告
- 工业互联网平台量子密钥分发技术政策法规解读报告001
- 沉浸式戏剧市场推广模式2025年创新策略研究报告001
- 2025年医药流通企业供应链优化与成本控制策略深度解析报告
- 3D打印技术在制造业大规模生产中的应用前景与挑战研究报告
- 快时尚品牌在时尚零售行业模式变革中的产品创新路径报告
- 爆破安全试题及答案
- 2025届浙江省湖州市名校英语七下期末达标检测试题含答案
- 广东省广州黄埔区五校联考2025届八下英语期中综合测试模拟试题含答案
- 安全知识试题六及答案
- 乙肝免疫标志物检测及其实验结果解读
- 软件定义网络SDN
- 血糖管理课件
- 2024年浙江省普通高中学业水平适应性考试历史试题(解析版)
- 410th循环流化床锅炉本体化学清洗方案(HCL)
- DB34∕T 1555-2011 存量房交易计税价格评估技术规范
- 青少年无人机课程:第一课-马上起飞
- 桂科版八年级下册信息技术 1.1规划网站 教学设计
- 民办学校托管合同范本
- 风扇合同范本
- GB/T 44325-2024工业循环冷却水零排污技术规范
评论
0/150
提交评论