




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
扩声系统基础知识 要健身和开展各项体育活动,就需要建造体育场馆。近年所建造的体育馆通常超越了体育活动和竞赛场地原有的功能使之有很大的扩展。在体育馆内不仅进行各种会议、报告,而且开展大型文娱活动,包括综艺晚会、大型演唱会、杂技、马戏、时装表演,甚至演奏交响乐。这些活动对于体育场馆来说已经不是偶然或额外的业务,已成为它提高社会效益和经济效益的经常性手段。因此,目前的体育馆实质上是地道的多功能大厅,所以在声学设计上有较高的要求。由于体育馆的容量大,混响时间长,平均自由程远远超出一般会堂而容易引起各种音质缺陷,而可以用作吸声处理的部位和面积极为有限,从而增加了声学设计的难度。 在体育馆内采用自然声演出,仅限于在小型体育馆内进行交响乐和钢管乐演奏,机会甚少,因此在声学设计中仅考虑用扩声系统的演出方式。但优质的扩声效果必须通过合理的建声设计才能得以实现,两者是相辅相成的。只有相互密切配合,才有可能用最低的投资获得良好的音质和艺术效果。 对于单项运动的体育馆(或称专用馆),如游泳馆、跳水馆、溜冰馆(人工和自然冰)、网球馆、田径馆和室*击场等,多功能使用的可能性极少,音质要求不高,主要是控制噪声和音质缺陷,使其具有必要的语言清晰度即可。 体育馆的声学设计与其类别、规模(容量、容积)和使用功能有关。因此,在声学设计的初步阶段就应确定其功能,根据设计规范和建设要求选择合理的声学设计指标,然后展开工作。 随着文化事业的蓬勃发展和人们文娱生活的内容日益丰富,声频工程的数量迅猛增加,质量大幅度提高,从事声频工程的人员也越来越多。但是在声频工程设计领域内,一些人仍然对声学概念认识不清、界线模糊。这种现象对提高声频工程质量极为不利。本文想通过简单的描述,指出其中的问题,澄清一些概念,抛砖引玉,希望能引起大家的重视,进而作更深入的讨论,以利于提高声频工程设计的整体水平,提高工程设计的质量。 一、功率放大器的储备功率与扬声器标称功率之间的关系 在声频工程中功率放大器的主要功能是放大信号并提供负载(扬声器系统)足够的功率。功率放大器对音质的影响主要取决于输入信号能否在不失真的状态下得到放大与传输,给负载以足够大的功率。功率放大器放大和传输的节目信号不同于简谐信号,是一个瞬时变化的复杂信号。它具有很多尖峰,它们的能量不大,但是峰很尖、很高。这些尖峰对响度的贡献很小,但对音质的影响却很大。如果发生削波,则放大的声音听起来让人感到发燥、发硬。如果只注意能量的传输(对应的量为响度),而不注意传输过程中波形的变化,那么,我们有可能听到的声音很响,但是不好听。 根据多种乐器和不同剧种节目信号的调查结果1,大部分节目信号的最大均方根功率(即节目信号的峰峰值在负载上的功率)与平均均方根功率(即节目信号在负载上的平均功率)之比为310,最高达12.7。如果功率放大器的额定功率对应于节目信号的平均均方根功率,那么功率放大器的最大输出功率应为其310倍方能保证输出信号不出现削波。这就是为什么我们选用功率放大器的功率要比放大节目信号的平均均方根功率大得多的缘由,这也是我们通常说的功率储备。 我们在一些介绍声频工程设计的文章中常看到这样的一些说法:“为了保证功放所配接的扬声器系统的安全,要求功放的额定输出功率与所配接的扬声器系统的标称功率相当”,“为了保证足够的功率储备,通常选用扬声器功率的1.22倍的功率放大器”等。这样的提法是否表明该系统已经考虑了功率储备或功率储备已足够了,不会出现削波现象了?事实上,功率放大器的功率与扬声器的功率不是同一概念。 功率放大器的输出功率一般是指一定失真限制条件上的正弦输出功率。例如,厂家规定的总谐波失真为0.1%,当功放在额定负载上的输出信号达到该失真时的输出电压称为最大输出电压,用这电压来计算功率放大器的输出功率,就是功率放大器标称的输出功率,这也可以理解为该功放的最大输出功率。而扬声器的标称功率,厂家经常提供的是粉噪功率,它是指在扬声器额定频率范围内,馈给以规定的模拟节目信号,连续工作100小时而不产生热和机械损坏的功率。显然,这两个功率是从完全不同的角度作出的规定和测试的,两者是不可比的。如果厂家能提供扬声器的正弦功率(指用正弦信号作为测试信号时馈给的功率),则两者有可比性,然而,厂家一般不提供这一数据。那么,对扬声器而言,扬声器的粉噪功率与正弦功率是否有一定的对应关系呢?正确的答案是没有!扬声器的粉噪功率和正弦功率对于不同结构、不同材料和不同规格的扬声器完全不同,后者还与频率有关。因此,我们可以说在声频工程中用功率放大器的功率与扬声器标称功率作比较以表征其功率储备的方法是不可取的 在扩声系统中声场的不均匀度是一个很受关注的指标。现代声系统中的扬声器系统的幅频响应和相频响应已经能做到很高的水平,特别是有源音箱在实验室里经过精心的调试已相当完美。但是,一放到厅堂中声场依然起伏,其主要的原因是声波的干涉。厅堂中声干涉主要有两类:不同声源之间的干涉和同一声源的直达声与反射声之间的干涉。本文将从基本原理出发,介绍和分析声波的干涉现象。希望能对了解和改善声场的起伏有所帮助。二、声波的表达 为了形象地说明波的产生,我们用绳子中传播的波作为例子。假如有一根很长的一端固定并被拉直的绳子,在x0处有一振动源上下抖动,由于绳子的弹性和质点运动的惯性,使得这振动在平直的绳子中产生扰动,这扰动在绳子中的传播就产生了波。如图1所示。很显然,这扰动在绳子中传播需要时间,设这传播的速度为v。如果x0处振动为yAcos?t,则在x轴上任一点r处的扰动,应该比x0处的扰动滞后,滞后时间为tr/v。所以在r处的振动大小应为(忽略初始相位). 三、扩声、混响与音质的关系 混响是指室内的声源发声停止后,在室内的声音经过多次反射或散射而延续的现象。它反映了室内声能的衰变,这衰变与室内的吸声,反射和散射等有关。100多年前,美国物理学教授W.C.赛宾首先提出了用声能衰减60dB所需时间,即混响时间来衡量厅堂的音质,并提供了计算室内混响的经验公式。经过后来的科学家研究,从扩散声场中声能密度随时间的衰减出发,在理论上推导出混响时间的表达式,发现赛宾提出的公式正是平均吸声系数0.2时理论公式的近似。从而,使我们对赛宾公式有了进一步的认识。尽管100多年来,科学工作者提出了很多影响厅堂音质的声学参量,但是,至今混响时间仍然是厅堂声学设计中惟一能定量计算的参量,也是一个公认的最成熟的厅堂音质的评价量。它是建筑声学的一个重要的物理量,它反映了室内声能随时间的衰减,以及不同频率的声能的衰减特性。尽管一个厅堂内不同位置测得的混响时间可能有差异,可是世界著名的音乐厅内的混响时间的空间标准偏差都很小,几乎不大于0.1s。在不同位置的混响时间几乎差不多,说明厅堂内的声场很均匀。所以混响时间是一个很好的厅堂声学设计的评价量,它应该与测量用的声源无关,这在有关标准中有明确的规定。然而,随着时代的发展、厅堂的扩大、观众人数的增多和电子技术的进步,厅堂内不可避免的需要用扩声系统。扩声与混响有什么关系呢?它对音质有没有影响?这正是我们要讨论的问题。 首先,扩声系统主要的功能是放大从声信号转变来的电信号或重放已录制的节目信号,把电信号通过扬声器转变成声信号辐射出去,所以它没有混响时间,但是,并不是说它与混响无关。我们都有这样的经验,在一个混响时间很长的房间内交谈,如果两人的距离较远,大声讲话反而听不清楚,两人靠近,讲话轻一点就可能听懂,这是因为两人靠近,直达声加强了,尽管房间的混响没有变。这说明在混响很长的地方可以通过增加直达声来提高语言的可懂度。有一个例子,在西欧的教堂中庄严、肃穆,牧师讲经声音洪亮,往往由于教堂内吸声不足,而混响时间很长,在大教堂的后座听不清楚。电声工作者在教堂内柱子的侧面安装了由小扬声器组成的声柱,朝向听众,起到了很好的效果(笔者曾亲身聆听过)。从声学角度看,采用小声柱增加了扬声器系统的指向性,改善了覆盖区域,增强了直达声。从传输频率范围看,采用小扬声器辐射的频率范围比较窄,没有低频辐射,不会激发低频混响,但是对于语言传输已经满足了要求。从辐射功率来看,小扬声器的辐射功率比较小,很快衰减不足以激发室内的混响。扬长避短,克服了长混响对语言的干扰。 在厅堂内增加直达声的强度可以减小厅内混响的影响。从声源发出的声音到达听众席的声能由两部分组成,一部分是直达声能,一部分是混响声能,它们的衰减特性(见图1)。 在混响声能为主的区域,当声源停止发声,则声能按照曲线AB衰减,衰减60dB所需的时间即为厅堂内的混响时间。在直达声为主的区域,当声源停止发声时,直达声能迅速降低,然后,以剩下的混响声能按同样的衰变率下降,如曲线CD。根据入耳的积分效应,在直达声为主的区域,感觉到的混响效果应满足OEM和ODC面积相等的条件。假设OB为衰减60dB所需的时间T60,则OE称为有效混响时间。显然,OE OB,直达声为主的区域内的有效混响时间一般比厅堂内的T60要短。但是,主观感觉上的差异还是有一定条件的,我们可以从理论上推导出:Teff=T60(1- lg )(1)式中,R为声能比,R=混响声能密度/直达声能密度;T60为厅堂内的混响时间;Teff为主观感觉的有效混响时间。 图2为TTeff/T60与声能比R的关系曲线。听众感到的有效混响时间仅在R1时有效混响时间的变化只有10%,实践证明人耳是不能觉察到的。要求降低R值,必须增加直达声能和降低混响声能,前者可以通过加强扬声器系统的指向性Q值来达到,后者则必须通过增加厅堂内的吸声处理方能减小混响声能的密度。 厅堂内直达声的覆盖直接影响到声源的有效作用距离。在室内,靠近声源的区域以直达声为主,随着离开声源的距离增加,直达声能减小,混响声能增加,当混响声能等于直达声能处离开声源的距离称为临界距离。它与厅堂声学参量,以及扬声器的指向性的关系如下:式中,V为室内容积;Q为声源的指向性因子;T60厅室内混响时间。 在室内为了保证语言传输的清晰度,一般选择扬声器系统的最大作用距离rmax=(23)Dc作为声源的有效作用距离。从(2)式中可以看出在混响时间和容积一定的厅堂内,增强扬声器系统的Q值,有利于扩大直达声的覆盖区和增加临界距离,提高声源的有效作用范围。 如果厅堂的混响时间比较短,例如,多功能厅的声学设计,为了适应厅内各种活动的需要,一般将混响时间设计得都比较短。在这种情况,我们可以通过信号处理的方法,增加被传输信号的混响时间来改善音质,避免因厅堂的混响时间太短而引起的声音发干和单薄的感觉。 当扩声系统重放节目信号时,听音人感受到的混响由二部分构成:一是因为录制的环境或节目需要加进去的混响(假设混响时间为T1),由节目制作者选择和调节的获得最佳效果;另一部分是重放空间的混响时间(假设为T2)。听音人感受到的混响时间为4:T60=(T13+T23) (3) 因此,只有T2比较短,以T1为主方可体现出节目本身的混响特色。所以,节目审听室的混响时间一般都设计得比较短,以保证放音效果。 最后要说明的是扩声系统无法补偿厅堂声学设计中出现的声缺陷。例如,厅堂内有相互平行的大墙面,如果在厅内发一脉冲声,则在两墙面之间会明显地听到多次颤动回声,如果厅内有凹形反射面,则在某一区域会形成声聚焦,导致该区域声音听不清楚。这些声学上的缺陷无法用扩声系统来消除,只有用声学的方法去补救。例如,在平面墙面增加吸声或挂大的画面,破坏来回反射的条件或增加扩散体等。 总之,在音乐厅和大剧院一类的厅堂中必须以建筑声学设计为主,通过建筑设计保证在场内有合理的自然混响,良好的扩散、均匀的传输特性,是决定音质的先天条件,再加上高质量的电声系统以弥补自然声的不足,扩声与混响两者相辅相成,以自然声为主,方能保证观众席有优良的音质。 扩声系统概述一、 扩声系统分类(一)按工作分类 1. 扩声系统:话筒和扬声器处在同一声场内,存在声反馈自激的条件,传声增益受到限制。 2. 放声系统:只有卡座、光盘机等声源,不存在声反馈条件,是扩声系统的一种特例。(二)按用途分类 1. 室外扩声系统:体育场、艺术广场、音乐喷泉、大型流动演出等。 特点: 空间宽广、服务区大、背景噪声大、受周围建筑物体反射影响。以直达声为主,无混响声,反射声延时超过 50ms(17m)时会出现重声或回声,影响声音清晰度和声像定位。音响效果(尤其是音乐喷泉)还受气候条件、 向和环境干扰等影响。 2. 室内扩声系统:各类影剧院、体育馆和歌舞厅等。 特点: 专业性很强,使用功能不同系统配置也不同,建声条件对音响效果影响很大。 3. 流动演出系统:常用于大型演出,临时安装的系统。 特点: 音响设备必须结构紧凑,便于运输和安装、使用环境苛刻。系统投资较大。 4. 公共广播系统(PA):车站、机场、地铁、港口、学校、宾馆作广播节目和背景音乐并兼做消防紧急广播。 特点: 使用功能很多,音响效果要求不苛刻,传输距离远,采用定电压传输。 5. 会议系统:会议中心、电话会议、电视会议和数字会议系统。 特点: 提高会议效率,声音清晰、不嘈杂、功能多(会议讨论系统、投票表决系统和同声传译系统等,包括视像同步摄录和会议代表身份识别等)。二、 扩声系统设计 扩声系统设计通常从声场设计开始,逐步向后推进到功放、声处理、调音台和声源。因为声场设计是满足系统使用功能和音响效果的基础。因此这种向后推进的设计步骤是十分必要的。室内扩声系统的供声方案 根据使用功能、房间体型和服务区大小选择供声方案。 1. 集中供声(点声源供声) 优点:可有效减小声源间的干扰,音质清晰、视听方向一致、听感自然、声场均匀。 缺点:声能损失较大,不适宜空间较低的房间和狭长的房间,集中式供声系统的扬声器吊挂高度不应低于810m,否则声场不易均匀。 2. 分散式供声 适用于狭长房间、高度较低的房间、混响时间较长的房间或隧道扩声系统。 优点:声场均匀,声能损失少。 缺点:视听不一致,声源之间干扰大,尤其是在两个声源覆盖的交叉重叠区音质差 近年来,全国各地很多地方建造了音乐厅。音乐厅是以演出古典音乐为主的演出场所,而古典音乐传统的习惯都是以自然声演出,除非是露天演出或场地特别开扩,一般是不用扩声设备的。因此音乐厅对室内的建筑环境声学要求就非常严格。音乐厅的声学设计非常看重混响时间的处理,大多数情况下都希望混响时间长一些。 音乐演出团到音乐厅演出之前要走台,因为音乐厅混响时间的长短对演员的自我感觉会产生影响,所以走台主要目的不是练习,而是要找在这个音乐厅演出的感觉。但是绝大多数走台都是在空场情况下进行的。音乐厅空场和观众满场的情况下,混响时间由于人体吸收总会有些差别。走台的演员当然要求尽可能地缩小这种差别。因为混响时间在空场和满场时如果相差0.3秒以上,到演出时就会对演员的表演情绪产生影响。往往是走台时感觉声音很丰满,自我感觉非常良好,但是当演出时坐满观众后(尤其是冬天),走台时的感觉就找不到了,觉得声音发干。这时演员的情绪就会受到影响,技巧的发挥也就容易失常。 音乐厅的内装修是决定混响效果的关键。此外,早期声的安排、吸声系数的处理也至关重要。 一般情况下,座椅所占观众厅表面积大约25%强,而吸声总量却占7080%。因此,为了延长混响时间,有些设计师们开始在座椅上想办法。 近几年,在进口座椅的一些资料上刊登了一种椅子的制作方法,而且渐趋流行。其主要特点就是椅子靠背的正面边缘留出木边,而且愈来愈宽,目的是要加大反射面积以延长混响时间。实践证明,这种思路对音乐演出团的走台有害无益。 电声系统概述 世界上广泛使用的电话网络是一个极其庞大而复杂的音响系统。它采用了一种系统处理法 ,从而使本地系统能集合成一个相当大的结合体。由于每一个本地系统均要按一个整体来设计,因而它可以与任何别的与其相似设计的本地系统相兼容。任何与当代个人计算机打交道的人都知道,它不能突破与别的个人计算机充分通讯的困难。系统设计依赖于一种公用的技术语言,该语言中的名词术语对于不同的人来说有相同的含义。通讯只有在这种语言和共同确定的标准得到通用时才能存在。声系统一般来说是一个小的局部音响系统。通过适当的设计,按其它局部系统或网络的情况 ,它们可以进行合成、组合或分离 。 一、扩声系统 扩声系统通常是把讲话者的声音对听者进行实时放大的系统 ,讲话者和听者通常在同一个声学环境中。成功的扩声系统必须要具有足够响度( 足够的声增益 )和足够的清晰度( 低的语言子音清晰度损失百分率 ),并且能使声音均匀地覆盖听众 ,而同时又不覆盖没有听众的区域。二、声重放系统 声重放系统是将来自信号源存储系统(任何录音系统)或来自远距离信号源(如:无线或有线的传输)的声音放大的系统。一个好的设计能给这样一个系统的换能器提供足够的电功率(在换能器的功率容量范围内)而同时又能控制所要求的覆盖和清晰度。与扩声系统相比,要求一个设计良好的声重放系统不应有再生振荡。 三、合成系统 合成系统为非人声的声源处理系统。例如包括噪声掩蔽(语言保密)系统、音乐合成系统,在录音控制室里修改现场实况录音,以达到某种必要的合成效果。 四、信号存储系统 信号存储系统包括各种形式的记录系统录音机、录音电话机、数字信号延迟系统以及混响通道。 五、音响测试系统 在主控制室机架中,大型商业声学安装通常带有诸如振荡器、电压表、有时还有示波器这些音晌测试系统。今天,许多专业音响系统都安装了复杂的实时分析设备作为其正常维护附属系统的一个部分。 六、利用音响装置的控制系统 某些音响附属系统不会发音,但可以用来控制别的系统。噪音自动操作电平调节器就是其中的一种。可变边缘唱片刻纹是另外一种。对声学工程师来说,在这类系统中存在着许多能发挥自己创造性的机会。 七、通讯系统 今天是这样一个时代,其会议室既被本地的声广播所覆盖,又与遥远的其它会议室相互联系在一起。因而,声学工程师必须懂得基本的通讯传输的一些工程问题。尤其是,他们必须熟悉诸如混频变压器及线路放大器一类的精心设计的终端设备。 八、系统要素 为了造出最简单的音响系统,我们必须动用一系列的基本要素。这些要素分成如下几大类:换能器、声学环境及电子设备。 换能器 换能器是将声、机械、化学和电能换成声、机械、化学或其它形式能量的装.置。传声器、扬声器、拾音器及传感器都是换能器。 声学环境 大多数人都没有认识到声学环境是声系统的一个组成部分。其实,房间参量都直接与换能器和电子设备中的互补参量相联系。如果电子设备要求电源有确定的电压、频率和电流型式(交流或直流L那么遇到未经核实的电源,声学工程师是不会把它完好的电子设备与其相联接的。然而如果将这种声系统接到某种未知的声学环境中的话,常常会导致灾难性的结果,就好像把它意外地与220V直流电源连接而不是与220V 交流电源连接一样。声学环境只有几个极为重要的参量 , 它们很容易测定。数学上的处理也不十分复杂。 电子设备 电子设备包括放大器、各种型式的信号处理器以及各种分配线路(有些可能是散布在有源装置中的无源装置)。 九、声系统的功能 在设计一个声系统时,最终的用户必须提出意见。必须考虑最终用户的要求。同时还要考虑实现的可能性。只有受到良好训练的专业工程师才能知道两者之间的区别。当最终用户知道了他们的工程要求为什么不可能时,他们不会继续坚持这些要求。通常,经解释他们的回答是“我们将接受你们做的最接近我们要求的工程”。这时,我们能写一项合同,该合同允许我们去尽可能更好地工作,同时 ,能准确地描述最终用户实际获得的工程水准。关键因素包括: 1. 最终用户所希望和需要的一种或多种类型的系统。2. 最终用户的要求和主要的系统要素的确定,特别是 : a) 功传声器的数量及其中有多少要同时通电工作 ; b) 该系统需要多种信号源还是单一的信号源 ; c) 听者在声学环境中不利用声系统而能清晰地听到讲话人(或其它主要声源)声音的最大距离 ; d) 在听众区域内任一点要求的声音响度。按所提到的这类关键问题,对环境进行考察,作出初步的计算,仔细地向最终用户解释可行的各种方案。通过商讨将用户的要求与设计能力结合起来。释可行的各种方案。通过商讨将用户的要求与设计能力结合起来。十、声系统工程设计 如果将声系统的要求看作近似于一个系统问题,并将各种独立变量的数据收集起来,就可以用这些数据来设计声系统。对所用元件的数量和种类、有关量值、调整性及可靠性进行有效的选定。同时还包括在计划阶段能精确地预测出,按声系统技术规范条款测试出能确认和要求确认的最终结果在大礼堂或大表演剧场中,任何地方听音人处的预计精度约在士3dB 。十一、基本的系统结构 从电声工程设计的观点来说,通常总是优先考虑单声源系统,任何别的选择都 必须进行较大的调整。这不是说别的选择就不能很好地工作,它只简单地意味着, 无论在何时,单声源系统的设计都有较大的余地,可以较低价格取得质量较高的系统。但各种功能要求就不能单用单声源系统。在初步计算时,应当把每一个系统都作为一个单声源系统来进行。都作为一个单声源系统来进行。首先要折衷协调的通常是一种多器件单声源阵列问题,它有几个高频器件对准不同的区域,从而构成一个单一器件所不能达到的听众区覆盖图。线性扩展列阵 , 它具有非常宽的频带以及低噪声的信号延迟装置。它是对单声源系统只需做的最少折衷协调选择的系统之一。在这些系统中,扬声器到听者之间的距离要调整到这样一种程度:即在这一距离上,直达声与混响声之比可达到一个具有超指向性的单声源效果相同的程度。个具有超指向性的单声源效果相同的程度。选择层次的另一种方法是在功能或环境严格控制的条件下所使用的一种方法, 它叫做高密度投射式分布系统。所需的高密度是利用多个声源聚焦成梳状滤波器式的一种功能作用。在密度足够高时,多种声畸变物会变成不相消的干涉形式。值得注意的是今天我们将不规则地安装传声器。梳状滤波是由桌子到传声器间这种不同的距离所引起的。值得注意的是今天我们将不规则地安装传声器。在较恶劣的环境下,或在某个听力受到较大损失的人需要听音时,耳机是最适合的。 在上述所有选择方案中,音响工程师都倾向于逐渐增加声源的数量并理所当然地缩小声源与听者之间的距离这一趋势。 音响系统的其它一些种类,包括为提供特殊效果而故意错位的声源(例如把扬 声器放置在剧院的四周)以及各种各样的多声道系统。 十二、语言与音乐系统之间的区别 广播音乐有一个主要的标准声音响亮而清晰。这样就要传送转换大量的电功率。换能器还应具有合理的效率和功率容量。由音乐家做出较高评价的某种系统,在讲演时几乎不很清晰。讲演的可懂度通常是要靠关闭大部分音乐系统并通过该系统的其它部分的信号处理才能获得。研究人员告诉我们,有理由确信我们的大脑在处理语言及音乐用的方法是完全不同的。虽然在普遍性中还有特殊性,但是研究人员通过用 NMR 扫描受语言和音乐激励的大脑的不同区域已发现了这种情况。 尽管能够设计一种对音乐和语言两者都适用的一个统一系统,综合考虑,该系统设计应倾向于音乐系统的要求。因此要精心设计一个范围非常宽的系统,并且又能在整个音乐系统的一个部分内对语言信号进行适当的信号处理。产生新音响的领域正在越来越引起人们的兴趣。在80年代初期,电子合成器领域中相当大的改进尤其令人激动。多种功能音响大厅,如巴黎的IRCAM,这个由非常聪明而有资历的研究人员所配备的大厅,将“系统”这一概念带到了未来。 十三、系统的最终目标 成功的电路设计者在许多其它学科中也都是专家,尤其在数学领域内。例如,换能器的设计者离不开拉普拉斯变换;系统设计者必须熟知适用于设计的各种元件及其稳 定程度;必须把这些元件组合成适合多种多样要求的工作系统;必须在装置的输入输出接口处调节电平及阻抗等有关参数,调节总的振幅响应并均衡系统传给每个听众的声功率分布。从坐在家用立体声系统前的个人到民用公共场合的成千上万个听众,这种调节都适用。在最终的分析中,系统设计者必须考虑如下的一些要求 : 1. 在每个听众处系统产生的声级 ; 2. 在每个听众处系统的声可懂度 ; 3. 在各听众间的系统的声均匀性 ; 4. 没有不希望要的噪音、干扰或假像特性。 今天,系统设计者具有相当好的计算及测量工具,这些工具确保了设计到听众耳朵之间的最佳效能。80年代初期,一直是音响系统设计者最头痛的问题之一,在设计阶段解决扬声器的观众覆盖,现已得到了较好的解决。能很好地满足这三个标准的系统是John Proh设计的球形方案。七十年代末,已开发了一种测试仪替代现有的音响系统测量方法,就是时间-能量-频率(TEF10的分析仪。TEF是技术上较先进的仪器之一。TEF10号系统具有适合于声系统测量需要的特有性能。TEF分析仪能够做到 : 1. 在一间非消声的空间中进行消声测量(与TEF分析仪一样,但可以大大地降低动态范围和参数选择 ); 2. 在有较高环境噪声级时测量仍有较高的分辨率 ; 3. 一给定的时间窗口比在非闭环系统有更高的频率分辨率 ; 4. 频率与复杂阵列的时间特性或整个系统的时间特性关系的测量 ; 5. 与声系统测量有关的各相关参数的测量 ; 6. 因为它既是一个全能的个人计算机又是适用的最先进的分析仪,所以每一个设计参量都可计算。 在声系统工业中,我们也许既是1/3倍频程的实时分析仪的第一个用户又是TEF系统的第一个用户。从我们的观点来说,TEF 分析仪对音响系统设计的影响比我们前面提到的用1/3倍频程均衡器和1/3倍频程分析仪,都要高出几个数量级。混响时间通俗来讲是声音在建筑物内的“产生-传播-反射-停止”的时间长短量。对各类场馆的混响时间要求也是不同的,有些地方要求时间短点,如录音室、演播制作室等,它要求是声音的清晰度,选择的混响时间自然要短,而如体育馆、教堂、大型歌舞厅则要求混响时间相对要长一点等,按设计要求进行用料加工,这样才可以保持声音的准确度、清晰度及增加音乐的节奏感及饱满度。 目前绝大多数的建筑,例如电影院、体育馆、展览馆、剧场、会议室等大中型建筑,以及部份广播、电棍音乐室、录音室及演播厅、歌舞厅、DISCO等中、小型建筑,其外观设计非常富丽堂皇,各有新异,但在建声设计方面较为薄弱,故此使用的时候不甚理想,严重时更产生更坏的效果,后期补救工程将会更大。例如“上海八万人体育场”,举行活动的时候,其噪声、杂声特别严重,导致运动员、观众在观看节目的时候感觉不安。这是由于设计之初只考虑到外形的美观而忽视了重要的声学设计环节,造成混响时间偏长所引起的。如果用以上的材料施工会较其它传统材料快捷方便得多,可以直喷现场制作,也可以直接挂上吸声构件,且吸音系数更高,安全防火及环保。美国植物纤维阻燃吸声环保材料具有超强的吸音性能,配套专用设备,施工后紧贴在反射面上,形成一种类似弹性体的效果,具有良好的阻尼特性,所以它的吸音效果极佳。对于传统的玻璃纤维等其它建声材料,它们的高频吸声效果同纤维素相差不大,但对500Hz以下的低频吸收就无能为力了,因为这些材 料在施工后随着自重的原因而不可能紧贴反射面,造成低频吸收效果极差,而纤维素的容重轻,施工后不会脱落,因此其低频吸收能力极强且不会变化。与其它传统材料比较,其低频吸收能力相差很大。纤维素施工是采用美国专用喷料机及专用防火胶水,利用喷料机高压喷涂的原理施工将纤维素和胶水在空中形成一个混合体,紧贴在各反射面上。纤维素因为质轻,再加上专用的高粘性胶水,应用在混凝土、木块、金属等各类结构上都不会脱落。 厅堂建筑声学及电声指标设计 在有电声装备的厅堂工程中,为了获得好听的音响效果,有必要认真进行厅堂的声学设计和处理。但在当今的装饰工程中,人们头脑中存在着许多模糊认识,习惯按似是而非的简单吸音概念装饰厅堂,以至投巨资装饰完毕的厅堂音响效果却往往难以达到预期的目的,留下很多遗憾。其实进行厅堂声学设计和处理历来是一门专业性很强、也不宜把握的技术。电声设计也一样,人们往往觉得只是把设备连通能响就行。但器材的先进性、可靠性、实用性、易维护性与档次搭配的协调性,系统设计方案的巧妙性,器材所具有的音色和文化地域背景,与经营目标的一致性,声场分布、电声技术指标的控制及与建筑声学和厅堂装饰的关系作用,施工安装的可靠性与安全性,电声噪音控制等,非有专业技术和丰富工程经验不行。按国家标准要求,装有电声设备的厅堂必需进行建筑声学及电声设计。一、 建声指标设计 厅堂的音质特性是建筑声学和电声电声的综合效果,建声是电声的前提, 搞好建声设计是很重要的。 根据用户各种厅堂的主要用途, 应严格参考国家有关技术标准,我们为贵饭店各类进行厅堂的建声指标设计:1.背景噪声 厅堂内的背景噪声高低影响语言清晰度和听音效果.一般在厅堂内最小声级的位置上,信噪S/N大于30dB,才不至于对清晰度有明显影响,信噪比提高到50dB,就可以获得高质量放声.一般厅堂内的语言电声系统的平均声压级约为70dB左右.背景噪声又是厅堂电声系统节目源的动态下限,直接影响到听众的听音效果.根据国际标准噪声评价数NR曲线,它是评价噪声烦恼和危害的参数。各类厅堂及专业用厅堂内噪声允许值以及根据我国一些厅堂实际噪声水平和设计所采用的指标多为NR40以下,为保证有足够的信噪比,要求所有厅堂内主生噪声的设备如空调,可控硅调光设备等全部开启的情况下,空场背景噪声应满足评价数小于或等于NR35。2.隔声隔振措施: 厅内应有良好的隔声隔振措施, 隔声隔振指标按GB3096-82城市区域环境噪声标准居民文教区执行即:昼间50dBA,夜间40 dBA。 3. 建筑声学指标: 各厅内建筑门窗、玻璃、座椅、装饰物等设施不得有共振现象,厅内不得出现回声、颤动回声、房间驻波和声聚焦等缺陷。混响时间见下表: 频响范围(Hz)混响时间(S)多功能厅250-80001.2-1.8夜总会200-100001.2-1.5杜比立体声影院200-100001.0-1.5该指标可能比有关国家标准规定的指标高,但根据我公司的经验完全可以达到,这样可带来更好的效果。 二电声指标设计1.多功能厅: 我们在以往会议厅电声系统设计时,声学特性指标均采用广播电影电视部部分颁标准GYJ25-86中语言和音乐兼用的电声系统二级(语言电声系统一级)声学特性指标.考虑到新建的北京饭店多功能厅应具备多媒体会议、同声传译、会议电声、文艺表演及交谊舞会等多种使用功能的要求,因此电声系统声学特性指标采用语言和音乐兼用的电声系统二级声学特性,为此多功能厅电声系统声学特性指标为:1.1最大声压级 (空场稳态准峰值声压级dB) 125-4000Hz范围内平均声压级大于或等于93dB 1.2传输频率特性 63-8000Hz,以125-4000Hz的平均声压级为0dB,允许偏差值为+4至-12dB,且在125-40000Hz内小于或等于正负4dB1.3声场不均匀度 在1000Hz和4000Hz声场不均匀度小于或等于8dB 1.4传声增益(dB) 125-4000Hz的平均值大于或等于8dB3122.夜总会参照WH 01-93卡啦OK、夜总会电声系统特性。 3123.杜比立体声影院参照 GYJ25-86。 以上声特性指标按照国家标准(GB4959-85进行测量。 注:为达到上述建筑声学及电声指标,还需采用专业声学设计与专业计算机辅助设计软件针对每个厅堂进行具体建声及电声设计,这需要确定每个厅堂的形状与用途,并与装饰公司之装饰设计和施工融合才能实施。一般应在甲方确定厅堂用途和签订工程合同后进行。 室内设计把满足剧院观众厅的声学要求摆在首要位置,为配合建筑声学设计,要求把剧院的混响时间控制在1.2秒以内。观众厅的天棚及墙面均按吸声及扩散要求做了特殊的构造形式。为充分利用直达声,通过对观众厅的反射面设计达到观众席声场分布均匀。本设计是通过精确设计天棚反射面分布及调整其倾角,让反射声更有效均匀地覆盖观众席。一般垂直墙面观众厅,侧墙有效反射面比较小,反射声又多为掠入射到观众席,效果大为逊色于天棚,本设计侧墙反射声较多反射到中、后观众席,这样既可防止观众席前座可能产生的回声,又能够弥补直接声随距离衰减的不足。本设计舞台口天棚反射面比较低,舞台口侧墙面反射声后掠,经计算证明没有出现回声的可能。后墙是观众厅回声的主要发源地,本设计除利用后墙起伏的扩散作用外,在后墙敷设足够数量的宽频带吸声材料,以根除回声的影响。为防备放映室、声控室墙面反射对观众厅前座的不利影响,放映室、声控室墙面内放置吸音棉。舞台天棚和舞台后墙5米以下敷设宽频带吸声材料,以防止舞台天棚和舞台地板之间可能产生的颤动回声(本剧院唯一可能产生颤动回声的地方)和无天幕时舞台后墙产生的回声。观众厅弧形曲面后墙由于已经作了吸声和扩散处理,加之本身曲率半径较大,因此无产生声聚焦的可能。观众厅和舞台为密实围护结构(墙和楼板)的围闭空间,隔声的薄弱环节为门。本设计全部进入观众厅的入口均为双重门声闸间处理,隔声量容易达到40分贝以上。穿墙管线应注意管线与墙之间的密缝。本设计吸声材料布置是后墙布置全频带吸声材料,后侧墙、后天棚布置中、高频带吸声材料,之外的其他地方布置低频吸声材料(经声线分析反射面位置除外)。并在设计上考虑了在观众厅的后侧墙部分预留了可调整的位置,在施工过程中可根据现场声学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自体免疫性疾病研究体系
- 急诊创伤病人麻醉处理要点
- 2025年新高考数学一轮复习讲义:第九章统计与成对数据的统计分析(学生版)
- 2025年音乐版权运营案例分析:流媒体平台用户付费策略深度研究报告
- 基于2025年标准的学校体育馆建设初步设计抗震性能评估报告
- 房地产企业2025年财务风险管理策略与稳健经营路径研究优化优化优化优化报告
- 2025年森林生态系统服务功能评估在生态修复中的应用报告
- 2025年能源互联网背景下分布式能源交易策略研究报告
- 一番的意思4篇
- 书法培训班教学管理制度
- DZ∕T 0270-2014 地下水监测井建设规范
- DL-T5153-2014火力发电厂厂用电设计技术规程
- 内江市社区工作者考试题库可打印
- 2023-2024学年广西壮族自治区桂林市物理八下期末考试试题及答案解析
- (高清版)JTGT 3365-02-2020 公路涵洞设计规范
- 2024春期国开本科《混凝土结构设计原理》形考作业1至4试题及答案
- 融资租赁租金及IRR收益测算表
- 电大财务大数据分析编程作业2
- 很完整半导体制造工艺流程
- 建筑结构荷载规范DBJ-T 15-101-2022
- 通信线路工程(第二版)第8章通信线路工程施工安全
评论
0/150
提交评论