高中数学常用公式及结论文档.doc_第1页
高中数学常用公式及结论文档.doc_第2页
高中数学常用公式及结论文档.doc_第3页
高中数学常用公式及结论文档.doc_第4页
高中数学常用公式及结论文档.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最好用的高中数学常用公式的整理 1 元素与集合的关系:,.2 集合的子集个数共有 个;真子集有个;非空子集有个;非空的真子集有个.3 二次函数的解析式的三种形式:(1) 一般式;(2) 顶点式;(当已知抛物线的顶点坐标时,设为此式)(3) 零点式;(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4 真值表: 同真且真,同假或假5 常见结论的否定形式;原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题互逆逆命题若则若则互互互为为互否否逆逆否 否否命题逆否命题若非则非互逆若非则非充要条件: (1)、,则P是q的充分条件,反之,q是p的必要条件; (2)、,且q p,则P是q的充分不必要条件;(3)、p p ,且,则P是q的必要不充分条件;4、p p ,且q p,则P是q的既不充分又不必要条件。7 函数单调性:增函数:(1)、文字描述是:y随x的增大而增大。(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是增函数。D则就是f(x)的递增区间。减函数:(1)、文字描述是:y随x的增大而减小。(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是减函数。D则就是f(x)的递减区间。单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。复合函数的单调性:函数 单调单调性内层函数外层函数复合函数等价关系:(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数. 8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数:定义:在前提条件下,若有,则f(x)就是奇函数。性质:(1)、奇函数的图象关于原点对称;(2)、奇函数在x0和x0和x0上具有相反的单调区间;奇偶函数间的关系:(1)、奇函数偶函数=奇函数; (2)、奇函数奇函数=偶函数;(3)、偶奇函数偶函数=偶函数; (4)、奇函数奇函数=奇函数(也有例外得偶函数的)(5)、偶函数偶函数=偶函数; (6)、奇函数偶函数=非奇非偶函数奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数9函数的周期性:定义:对函数f(x),若存在T0,使得f(x+T)=f(x),则就叫f(x)是周期函数,其中,T是f(x)的一个周期。周期函数几种常见的表述形式: (1)、f(x+T)= - f(x),此时周期为2T ;(2)、 f(x+m)=f(x+n),此时周期为2 ;(3)、,此时周期为2m 。10常见函数的图像: 11 对于函数(),恒成立,则函数的对称轴是;两个函数与 的图象关于直线对称. 12 分数指数幂与根式的性质:(1)(,且).(2)(,且).(3).(4)当为奇数时,;当为偶数时,.13 指数式与对数式的互化式: .指数性质: (1)1、 ; (2)、() ; (3)、(4)、 ; (5)、 ; 指数函数:(1)、 在定义域内是单调递增函数;(2)、 在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1)对数性质: (1)、 ;(2)、 ; (3)、 ;(4)、 ; (5)、 (6)、 ; (7)、 对数函数: (1)、 在定义域内是单调递增函数;(2)、在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0)(3)、 (4)、 或 14 对数的换底公式 : (,且,且, ). 对数恒等式:(,且, ).推论 (,且, ).15对数的四则运算法则:若a0,a1,M0,N0,则(1); (2) ;(3); (4) 。16 平均增长率的问题(负增长时):如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.17 等差数列:通项公式: (1) ,其中为首项,d为公差,n为项数,为末项。(2)推广: (3) (注:该公式对任意数列都适用)前n项和: (1) ;其中为首项,n为项数,为末项。(2)(3) (注:该公式对任意数列都适用)(4) (注:该公式对任意数列都适用)常用性质:(1)、若m+n=p+q ,则有 ;注:若的等差中项,则有2n、m、p成等差。(2)、若、为等差数列,则为等差数列。(3)、为等差数列,为其前n项和,则也成等差数列。(4)、 ; (5) 1+2+3+n=等比数列:通项公式:(1) ,其中为首项,n为项数,q为公比。(2)推广:(3) (注:该公式对任意数列都适用)前n项和:(1) (注:该公式对任意数列都适用)(2) (注:该公式对任意数列都适用) (3) 常用性质:(1)、若m+n=p+q ,则有 ;注:若的等比中项,则有 n、m、p成等比。(2)、若、为等比数列,则为等比数列。18分期付款(按揭贷款) :每次还款元(贷款元,次还清,每期利率为).19三角不等式:(1)若,则.(2) 若,则.(3) .20 同角三角函数的基本关系式 :,=,21 正弦、余弦的诱导公式(奇变偶不变,符号看象限)22 和角与差角公式 ;.=(辅助角所在象限由点的象限决定, ).23 二倍角公式及降幂公式 . 24 三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0)的周期;函数,(A,为常数,且A0)的周期.三角函数的图像:25 正弦定理:(R为外接圆的半径).26余弦定理:;.27面积定理:(1)(分别表示a、b、c边上的高).(2).(3).28三角形内角和定理 :在ABC中,有.29实数与向量的积的运算律:设、为实数,那么:(1) 结合律:()=() ;(2)第一分配律:(+) =+;(3)第二分配律:(+)=+.30与的数量积(或内积):=|。31平面向量的坐标运算:(1)设=,=,则+=.(2)设=,=,则-=. (3)设A,B,则.(4)设=,则=.(5)设=,=,则=.32 两向量的夹角公式:(=,=).33 平面两点间的距离公式: =(A,B).34 向量的平行与垂直 :设=,=,且,则:|= .(交叉相乘差为零) () =0.(对应相乘和为零)35 线段的定比分公式 :设,是线段的分点,是实数,且,则().36三角形的重心坐标公式: ABC三个顶点的坐标分别为、,则ABC的重心的坐标是.37三角形五“心”向量形式的充要条件:设为所在平面上一点,角所对边长分别为,则(1)为的外心.(2)为的重心.(3)为的垂心.(4)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论