




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
命题预测: 分析近年高考试题,平面向量部分突出考查了向量的基本运算,由于大纲要求重在基础,所以预计本章的命题趋势为:,1考查向量的基本概念、性质和运算向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加减法、实数与向量的积、向量的数量积等运算,高考中或直接考查或用以解决有关长度、垂直、夹角、判断多边形的形状等此类题一般以选择题形式出现,难度不大 2解斜三角形这部分内容的考查,主要是在三角形中考查正、余弦定理与三角恒等变形知识的综合应用,因此,以三角形为背景,以三角恒等变形公式、向量等为工具的小型综合问题仍是热点,应加强正、余弦定理的训练,3考查平面向量的综合运用向量的坐标是代数与几何联系的桥梁,它融数、形于一体,具有代数形式和几何形式的双重身份,是中学数学知识的一个重要交汇点,常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅此类题一般以解答题形式出现,综合性比较强,难度也比较大,备考指南: 1在复习过程中,抓住源于课本,高于课本的指导方针,本章考题很多是课本的变式题,即源于课本因此,掌握双基、精通课本是本章的关键对基本概念要理解到位,不留下盲点;运算要准确,特别是向量互相垂直、平行的充要条件(坐标运算形式),2在解决有关平面向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对向量这一二维(大小和方向)的量的本质认识,并体会用向量处理问题的优越性;二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用,3在解决解斜三角形问题时,要注意运用正弦定理、余弦定理来解决问题,要体会向量方法在解斜三角形中的应用;还要体会解斜三角形是重要的测量手段,从而提高解决实际问题的能力,4复习中应有意识地把向量与其它内容进行整合如向量与三角函数、函数、解析几何等,特别是平面向量与三角知识的融合交汇问题,在以后的高考中一定会有所体现 5本章高考题型既会有基本的选择题和填空题,又会有小型或大型的综合题复习时既要熟练掌握基本题型,又要对有一定难度的大型综合题进行针对性的准备.,基础知识 一、向量的有关概念 1向量:既有 又有 的量叫做向量,向量的大小叫做向量的 (或模) 2零向量: 的向量叫做零向量,其方向是 的,大小,方向,长度,长度为0,任意,3单位向量:长度等于 的向量, 是与a同向的单位向量, 是与a反向的单位向量 4平行向量:方向 或 的 向量,平行向量又叫 ,任一组平行向量都可以移到同一直线上规定:0与任一向量 5相等向量:长度 且方向 的向量 6相反向量:长度 且方向 的向量,1个单位长度,相同,相反,非零,共线向量,平行,相等,相同,相等,相反,二、向量的表示方法 1 表示法:如:a, 等 2 表示法:用一条有向线段表示向量 3 表示法:在平面直角坐标系中,设向量 的起点O在坐标原点,终点A坐标为(x,y),则(x,y)称为 的坐标,记为 (x,y),字母,几何,代数,三、向量的加法和减法 1加法 法则: 法则, 法则,加法定义即三角形法则;以a,b为邻边作平行四边形ABCD(取同一起点),即 则 即为a,b的和 运算性质: ab (交换律); (ab)c (结合律); a0 a.,三角形,平行四边形,ba,a(bc),0a,加法的几何意义:从法则可以看出,如下图所示,2减法 法则: ; 几何意义:如右图所示,三角形法则,四、实数与向量的积 1定义:实数与向量a的积是一个向量,记作 ,它的长度与方向规定如下: |a| ; 当0时,a与a的方向 ;当0时,a与a的方向 ;当0时,a . 2运算律:设,R,则: (a) ;()a ; (ab) .,a,|a|,相同,相反,0,()a,aa,ab,五、两个向量共线定理:向量b与a(a0)共线的充要条件是有 . 六、平面向量基本定理 如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的任一向量a,有且只有一对实数1,2,使得 . 我们把不共线的向量e1,e2叫做表示这个平面内所有向量的一组 ,且只有一个实数,使得ba,不共线,a1e12e2,基底,一、向量的有关概念应用失误 1给出下列命题:若|a|b|,则ab;若|a|b|,则ab;若ab,则ab;若ab,则ab;若ab,则|a|b|,其中,正确命题的序号是_(把你认为正确的命题序号都填上) 答案:,2给出下列命题:若 则四边形ABCD为平行四边形;在ABCD中,一定有 若mn,np,则mp;若ab,bc,则ac.其中正确命题的序号为_ 答案:,二、向量数乘应用失误 4已知,R,则下列各命题:0,a0时,a与a的方向一定相反;0,a0时,a与a的方向一定相同;0,a0时,a与a的方向一定相同;0,a0时,a与a的方向一定相反,则正确命题的序号为_ 答案:,三、平行向量基本定理的应用失误 5设两个非零向量e1,e2不共线,且(ke1e2)(e1ke2),则实数k的值为_ 答案:1或1,回归教材 1给出下列命题 向量 的长度与向量的 长度相等; 向量a与向量b平行,则a与b的方向相同或相反; 两个有共同起点而且相等的向量,其终点必相同; 两个有共同终点向量,一定是共线向量; 向量 与向量 是共线向量,则点A、B、C、D必在同一条直线上; 有向线段就是向量,向量就是有向线段 其中假命题的个数为 ( ),A2 B3 C4 D5 答案:C,2(教材P1195题改编)如图,四边形ABCD中 则相等的向量是 ( ),解析: 四边形ABCD是平行四边形 答案:D,答案:A,A2 B3 C2 D3 答案:A,5(教材P1136题改编)化简: 答案:(1)0 (2)0 (3)0 (4)0,【例1】 判断下列命题是否正确,不正确的说明理由 (1)若向量a与b同向,且|a|b|,则ab; (2)若向量|a|b|,则a与b的长度相等且方向相同或相反;,(3)对于任意向量|a|b|,且a与b的方向相同,则ab; (4)由于0方向不确定,故0不能与任意向量平行; (5)向量 与向量 是共线向量, 则A、B、C、D四点在一条直线上; (6)起点不同,但方向相同且模相等的几个向量是相等向量,解析 (1)不正确因为向量是不同于数量的一种量,它由两个因素来确定,即大小与方向,所以两个向量不能比较大小,故不正确 (2)不正确,由|a|b|只能判断两向量长度相等,不能判断方向 (3)正确|a|b|,且a与b同向,由两向量相等的条件可得ab.,(4)不正确由零向量性质可得0与任一向量平行,可知不正确 (5)不正确若向量 与向量 是共线向量,则向量 与 所在的直线平行或重合,因此,A、B、C、D不一定共线 (6)正确对于一个向量只要不改变其大小与方向,是可以任意移动的,总结评述 对于向量中的零向量、平行向量、相等向量等概念,应有正确认识,才能做出正确解答,判断下列各命题的真假 (1)若|a|b|,则ab; (2)若A、B、C、D是不共线的四点,则 是四边形ABCD为平行四边形的充要条件; (3)若ab,bc,则ac; (4)两个向量相等的充分必要条件是它们的起点相同,终点相同; (5)|a|b|是ab的必要不充分条件; (6)若ab,bc,则ac(b0),解:(1)不正确,两个向量的长度相等,方向不一定相同 (2)正确 (3)正确,因为向量相等是模与方向均相同,从而ac. (4)不正确,充要条件是大小相等且方向相同;起点相同,终点相同是两向量相等的充分不必要条件 (5)正确,因为|a|b| /ab,但ab|a|b|. (6)正确,根据向量平行的定义可知,命题正确.,总结评述 本例中应用了向量的加减法运算,注意了M、N将AB和OD所分成的比例,以达到用a、b来表示的目的,(2009湖南,4)如图所示,D,E,F分别是ABC的边AB,BC,CA的中点,则 ( ),答案:A,答案:A,【例3】 设两个非零向量a与b不共线 (2)试确定实数k,使kab和akb共线,又它们有公共点B,A、B、D三点共线,(2)kab与akb共线, 存在实数,使kab(akb), 即kabakb,(k)a(k1)b. a、b是不共线的两个非零向量, kk10,k210. k1. 反思归纳 证明三点A、B、C共线,借助向量,只需要证明由这三点A、B、C所组成的向量中有两个向量共线,即这两个向量之间存在一个实数,使ab(b0)即可,(2009北京,2)已知向量a、b不共线,ckab(kR),dab.如果cd,那么 ( ) Ak1且c与d同向 Bk1且c与d反向 Ck1且c与d同向 Dk1且c与d反向 答案:D,解析:cd且a,b不共线, 存在唯一实数使cd. kabab, 故选D.,思路点拨:由于A、C、D三点共线,因此存在实数,使 因而可据已知条件和向量相等条件得到关于、k的方程,从而求出k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转让股份协议书
- 浙江省嘉兴市2016年教学评比浙教版九年级上科学第三章第四节《简单机械》(第一课时)教学设计
- 大坑租赁协议书
- 自愿离婚协议书的范本
- 房屋拆除协议书
- 二年级道德与法治上册 第三单元 1 我爱秋天 2 果实长大不容易说课稿 浙教版
- 协议书一制性
- 2024年学年八年级语文上册 第三单元 宋词集粹(下)第10课《西江月 阻风山峰下》说课稿 沪教版五四制
- 二手买房协议书
- 柳埠中学八下unit10复习课教学设计
- 不知足常乐最终辩论稿
- 2025云南昆明元朔建设发展有限公司第一批收费员招聘20人考试参考试题及答案解析
- 2026农业银行四川省分行秋季校园招聘1374人考试参考题库及答案解析
- 建筑垃圾回收利用全过程信息化管理方案
- 第9课《天上有颗“南仁东星”》 课件 2025-2026学年统编版语文八年级上册
- 《山水相逢》课件2025-2026学年人美版(2024)八年级美术上册
- 法警安全检查培训课件
- 人员密集场所安全培训教学课件
- 知识产权保护与运用培训课件
- 2025年广东省政府采购评审专家考试真题含答案
- 新疆省中考英语真题全解析
评论
0/150
提交评论