




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,24.2 解一元二次方程,第二十四章 解一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 配方法,1.学会用直接开平方法解简单的一元二次方程. 2.通过直接开平方法的学习,了解配方法解一元二次方程的解题步骤. (重点),一元二次方程的一般式是怎样的?你知道求一元二次方程的解的方法有哪些吗?,导入新课,(a0),回顾与思考,讲授新课,一般地,对于形如x2=a(a0)的方程,根据平方根的定义,可解得 , 这种解一元二次方程的方法叫做直接开平方法.,方程 的根是 方程 的根是 方程 的根是,x1=0.5, x2=0.5,x13, x23,x12, x21,问题,这种方程怎样解?,变形为,的形式(a为非负常数),变形为,x24x10,(x2)2=3,像这种先对原一元二次方程配方,使它一边出现含未知数的一次式的平方后, 再用直接开平方法求解的方法叫做配方法.,(1)x28x =(x4)2 (2)x24x =(x )2 (3)x2_x 9 =(x )2,配方时, 等式两边同时加上的是一次项系数一半的平方.,16,6,3,4,2,探究归纳,例 用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-3x-1=0.,典例精析,在运用配方法时,化二次项系数为1的目的是为了便于配方(此时方程两边同时加上一次项系数一半的平方即可),配方的目的是将原方程化为(x+m)2=n(n0)的形式,进而直接开平方求解.,当堂练习,1.解下列方程:,(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12; (3)4x2-6x-3=0; (4) 3x2+6x-9=0.,解:x2+2x+2=0,,(x+1)2=-1.,此方程无解;,解:x2-4x-12=0,,(x-2)2=16.,x1=6,x2=-2;,解:x2+2x-3=0,,(x+1)2=4.,x1=-3,x2=1.,2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?,解:设道路的宽为xm, 根据题意得,(35-x)(26-x)=850,,整理得,x2-61x+60=0.,解得,x1=60(不合题意,舍去),x2=1.,答:道路的宽为1m.,能力提升 配方法说明:不论k取何实数,多项式k24k5的值必定大于零.,解:k24k5=k24k41,=(k2)21,因为(k2)20,所以(k2)211.,所以k24k5的值必定大于零.,课堂小结,1.一般地,对于形如x2=a(a0)的方程,根据平方根的定义,可解得 ,这种解一元二次方程的方法叫做直接开平方法.,2.像这种先对原一元二次方程配方,使它出现完全平方式后, 再用直接开平方法求解的方法叫做配方法.,注意:配方时, 等式两边同时加上的是一次项系数一半的平方.,用配方法解一元二次方程的步骤:,移项:把常数项移到方程的右边; 配方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥台及台身施工方案设计
- 大山里的施工方案设计
- 钢架房屋配送方案范本
- 2025年职高专业信息题库及答案
- 农林管理方案范本
- 山东济南市商河县城乡公益性岗位招聘考试真题2024
- 监理施工方案的审批权限
- 钢结构管线架空施工方案
- 瑞安地源热泵井施工方案
- 雾化系统检修方案范本
- 四年级下册心理健康教案-第二十五课 有了苦恼会倾诉-培养孩子的乐观情绪|北师大版
- 预应力混凝土管桩(L21G404)
- DL-T5024-2020电力工程地基处理技术规程
- PICC堵管原因与再通方法
- 初中数学分层作业设计举例-有理数
- 给小学生科普化学
- 驾照体检表完整版本
- 磁保持继电器基础知识课件
- 安全生产区域管理办法范本
- 设备保管协议
- 中石油职称英语通用教材
评论
0/150
提交评论