初中数学知识总结.doc_第1页
初中数学知识总结.doc_第2页
初中数学知识总结.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学知识总结(北师大版)一、实数1.1有理数1.1.1有理数的定义:整数和分数的统称。1.1.2有理数的分类:(1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。(2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。1.1.3数轴1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。1.1.3.2数轴的三要素:原点正方向单位长度1.1.3.3每个有理数都能用数轴上的点表示1.1.4相反数1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为01.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数1.1.4.3相反数的判别(1)若 ,则 、 互为相反数(2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。1.1.5倒数1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数)注:零没有倒数。1.1.6绝对值1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作a)1.1.6.2绝对值的性质:a01.1.7有理数大小的比较1.1.7.1正数大于0,负数小于01.1.7.2正数大于负数1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。1.1.8有理数的加法1.1.8.1运算法则:符号相同的两个数相加,取相同的符号,并把绝对值相加绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)任何有理数加0仍等于这个数。1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c1.1.9有理数的减法1.1.9.1运算法则:减去一个数等于加上这个数的相反数1.1.9.2有理数减法转化有理数加法1.1.10有理数的乘法1.1.10.1运算法则:两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得正,正负的负,负正的负)任何有理数乘0仍等于0多个不等于0的有理数相乘时,积的符号由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。1.1.10.2乘法交换律在有理数乘法中仍然适用,即 1.1.10.3乘法结合律在有理数乘法中仍然适用,即 1.1.10.4乘法分配律在有理数乘法中仍然适用,即 1.1.11有理数的除法1.1.11.1运算法则:除以一个数等于乘上这个数的倒数(除数不能为0,否则无意义)1.1.11.2有理数除法转化有理数乘法1.1.12有理数的乘方1.1.12.1有理数乘方的意义:求相同因数积的运算叫做乘方1.1.12.2有理数乘方的表示方法: 个相同因数 相乘表示为 ,其中 称为底数, 称为指数,而乘方的结果叫做幂,读作“ 的 次方”或“ 的 次幂”(当 =2时,读作 的平方,简称 方)1.1.12.3运算规律:正数的任何次幂都为正数负数的奇次幂是负数,负数的偶次幂是正数0的任何次幂都等于0(0次幂除外)任何数的零次幂都等于1(0次幂除外)1.1.13有理数的混合运算1.1.13.1运算顺序:先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即:一级运算)如果是同级运算,则按从左到右的运算顺序计算如果有括号,先算小括号,再算中括号,最后算大括号。1.1.14科学记数法1.1.14.1科学记数法的定义:把一个大于10的有理数记成 的形式(其中1 10)叫做科学记数法。1.1.15近似数1.1.15.1近似数的定义:接近准确数而不等于准确数的数叫做这个准确数的近似数或近似值。1.1.15.2求近似值的方法:四舍五入法收尾法(进一法)去尾法。1.1.15.3有效数字的定义:一个近似数精确到哪一位,从左起第一个不是0的数字起,到这一位数字上的所有数字(包括其中的0)叫做这个近似值的有效数字。1.2 实数1.2.1平方根1.2.1.1平方根的定义:如果一个数的平方等于 ,这个数就叫做 的平方根(或二次方根),即 ,我们就说 是 的平方根。1.2.1.2平方根的表示方法:如果 ( 0),则 的平方根 记作 ,“ ”读作“正负根号 ”,其中 读作“二次根号”,2叫做根指数, 叫做被开方数。1.2.1.3平方根的性质:一个正数的平方根有两个,这两个平方根互为相反数;0的平方根只有一个,就是0;负数没有平方根。1.2.1.4开平方的定义:求一个数的平方根的运算就叫做开平方(开平方和平方互为逆运算)。1.2.2算术平方根1.2.2.1算术平方根的定义:正数 有两个平方根,其中正数a的正的平方根叫做 的算术平方根,记作 ,读作“根号 ”。1.2.2.2算术平方根的性质:具有双重非负性,即: 0, 0 =a( 0) = ,当 0时, = = ;当 0时, = =- 1.2.3立方根1.2.3.1立方根的定义:如果一个数的立方等于 ,这个数就叫做 的立方根(或叫做 的三次方根)1.2.3.2立方根的表示方法:如果 ,则x叫做a的立方根,记作 ,其中 叫做被开方数,3叫做根指数。1.2.3.3立方根的性质:正数有一个立方根,仍为正数,负数有一个立方根,仍为负数,0的立方根仍为0。 1.2.3.4开立方的定义:求一个数的立方根的运算叫做开立方(它与立方互为逆运算)1.2.4无理数1.2.4.1无理数的定义:无限不循环小数叫做无理数。1.2.4.2判断无理数的注意事项:带根号的数不一定是无理数,如 是有理数,而不是无理数;无理数不一定是开方开不尽的数,如圆周率 1.2.5实数1.2.5.1实数的定义:有理数和无理数的统称1.2.5.2实数的性质:实数与数轴上的点一一对应实数a的相反数是-a,实数 的倒数是 ( 0) 0, =- 有理数范围内的运算律、幂的运算法则、乘法公式,在实数范围内同样适用1.2.5.3两个实数的大小比较:正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。在数轴上表示的两个数,右边的数总比左边的数大作商法:两个实数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。1.2.6二次根式1.2.6.1二次根式的定义:式子 ( 0)叫做二次根式。1.2.6.2二次根式的运算性质: ( 0, 0) ( 0, 0)1.2.6.3最简二次根式:满足下列两个条件的二次根式叫做

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论