面积计算总结与补充A.doc_第1页
面积计算总结与补充A.doc_第2页
面积计算总结与补充A.doc_第3页
面积计算总结与补充A.doc_第4页
面积计算总结与补充A.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

面积计算总结与补充平面几何也是小升初考试的必考内容,而且常常以大题形式出现,分值又较高,希望同学们重视并好好总结归纳。本讲内容:因大部分同学未学过直线型面积计算的奥数题,特补充如下内容。需着重注意比例模型的应用。三则附录内容:附一为完整的直线型面积五大模型,附二为常见公式总结,附三是华罗庚课本对不规则图形面积计算方法的总结。其中五大模型中模型一和模型三很常用,必须掌握;公式要求掌握并能熟练应用;方法总结部分理解即可,不需记忆。例题1。181ABCFED已知图181中,三角形ABC的面积为8平方厘米,AEED,BD=BC,求阴影部分的面积。【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。由于AE=ED,连接DF,可知SAEF=SEDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。 因为BD=BC,所以SBDF2SDCF。又因为AEED,所以SABFSBDF2SDCF。 因此,SABC5 SDCF。由于SABC8平方厘米,所以SDCF851.6(平方厘米),则阴影部分的面积为1.623.2(平方厘米)。练习11、 如图182所示,AEED,BC=3BD,SABC30平方厘米。求阴影部分的面积。2、 如图183所示,AE=ED,DCBD,SABC21平方厘米。求阴影部分的面积。AABCFEDA3、 如图184所示,DEAE,BD2DC,SEBD5平方厘米。求三角形ABC的面积。FFEEDBCCDB184183182例题2。两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?BCDAO612【思路导航】已知SBOC是SDOC的2倍,且高相等,可知:BO2DO;从SABD与SACD相等(等底等高)可知:SABO等于6,而ABO与AOD的高相等,底是AOD的2倍。所以AOD的面积为623。因为SABD与SACD等底等高 所以SABO6因为SBOC是SDOC的2倍 所以ABO是AOD的2倍所以AOD623。 答:AOD的面积是3。练习21、 两条对角线把梯形ABCD分割成四个三角形,(如图186所示),已知两个三角形的面积,求另两个三角形的面积是多少?2、 已知AOOC,求梯形ABCD的面积(如图187所示)。BCDAO3、 已知三角形AOB的面积为15平方厘米,线段OB的长度为OD的3倍。求梯形ABCD的面积。(如图188所示)。BCDAO4BCDAO848188187186例题3。D四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15平方厘米。求四边形ABCD的面积(如图189所示)。FAE189CB【思路导航】由于E、F三等分BD,所以三角形ABE、AEF、AFD是等底等高的三角形,它们的面积相等。同理,三角形BEC、CEF、CFD的面积也相等。由此可知,三角形ABD的面积是三角形AEF面积的3倍,三角形BCD的面积是三角形CEF面积的3倍,从而得出四边形ABCD的面积是四边形AECF面积的3倍。 15345(平方厘米) 答:四边形ABCD的面积为45平方厘米。练习31、 四边形ABCD的对角线BD被E、F、G三点四等分,且四边形AECG的面积为15平方厘米。求四边形ABCD的面积(如图1810)。2、 已知四边形ABCD的对角线被E、F、G三点四等分,且阴影部分面积为15平方厘米。求四边形ABCD的面积(如图1811所示)。3、 如图1812所示,求阴影部分的面积(ABCD为正方形)。6EADADDEGA4FFGCBCBECB181218111810例题4。BADCO如图1813所示,BO2DO,阴影部分的面积是4平方厘米。那么,梯形ABCD的面积是多少平方厘米?E1813【思路导航】因为BO2DO,取BO中点E,连接AE。根据三角形等底等高面积相等的性质,可知SDBCSCDA;SCOBSDOA4,类推可得每个三角形的面积。所以, SCDO422(平方厘米) SDAB4312平方厘米 S梯形ABCD12+4+218(平方厘米) 答:梯形ABCD的面积是18平方厘米。练习41、 如图1814所示,阴影部分面积是4平方厘米,OC2AO。求梯形面积。2、 已知OC2AO,SBOC14平方厘米。求梯形的面积(如图1815所示)。D3、 已知SAOB6平方厘米。OC3AO,求梯形的面积(如图1816所示)。OADABADCOO1816CB18151814CB例题5。如图1817所示,长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF的面积是4,求三角形ABC的面积。AFFACCEDEDB1817【思路导航】连接AE。仔细观察添加辅助线AE后,使问题可有如下解法。 由图上看出:三角形ADE的面积等于长方形面积的一半(162)8。用8减去3得到三角形ABE的面积为5。同理,用8减去4得到三角形AEC的面积也为4。因此可知三角形AEC与三角形ACF等底等高,C为EF的中点,而三角形ABE与三角形BEC等底,高是三角形BEC的2倍,三角形BEC的面积为522.5,所以,三角形ABC的面积为16342.56.5。练习51、 如图1818所示,长方形ABCD的面积是20平方厘米,三角形ADF的面积为5平方厘米,三角形ABE的面积为7平方厘米,求三角形AEF的面积。2、 如图1819所示,长方形ABCD的面积为20平方厘米,SABE4平方厘米,SAFD6平方厘米,求三角形AEF的面积。3、 如图1820所示,长方形ABCD的面积为24平方厘米,三角形ABE、AFD的面积均为4平方厘米,求三角形AEF的面积。ADDCBAFDAFFCCEBE1819BE18201818附录一:【几个重要的模型】模型一:同一三角形中,相应面积与底的正比关系:即:两个三角形高相等,面积之比等于对应底边之比。 S1S2 =ab ;模型一的拓展: 等分点结论(“鸟头定理”)如图,三角形AED占三角形ABC面积的= 模型二:任意四边形中的比例关系 (“蝴蝶定理”)S1S2=S4S3 或者S1S3=S2S4 AOOC=(S1+S2)(S4+S3) 模型三:梯形中比例关系(“梯形蝴蝶定理”)S1S3=a2b2S1S3S2S4= a2b2abab ; S的对应份数为(a+b)2模型四:相似三角形性质 ; S1S2=a2A2 模型五:燕尾定理SABG:SAGCSBGE:SGECBE:EC;SBGA:SBGCSAGF:SGFCAF:FC;SAGC:SBCGSADG:SDGBAD:DB;附录二:公式总结附录三:方法总结下面是老华罗庚课本对面积的总结,虽然啰嗦,但还比较全面,理解就好,不需记忆:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、 相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了. 二、 相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可. 三、 直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2,高为4的三角形,面积可直接求出来。四、 重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、 辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便. 六、 割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、 平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。八、 旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、 对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。十、重叠法:这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SABSASB-SAB)解决。例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分. 答案:练11、 305212平方厘米2、 21739平方厘米3、 5322平方厘米练21、 422 8242、 8216 16+82+4363、 15345 15+5+15+4580练31、 15230平方厘米2、 15460平方厘米3、 662

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论