




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数的热点问题【2019年高考考纲解读】导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力估计以后对导数的考查力度不会减弱作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 【题型示例】题型一、利用导数证明不等式用导数证明不等式是导数的应用之一,可以间接考查用导数判定函数的单调性或求函数的最值,以及构造函数解题的能力例1、已知函数f(x)ae2xaexxex(a0,e2.718,e为自然对数的底数),若f(x)0对于xR恒成立(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且f(x0).(2)证明当a1时,f(x)e2xexxex,f(x)ex(2exx2)令h(x)2exx2,则h(x)2ex1,当x(,ln 2)时,h(x)0,h(x)在(ln 2,)上为增函数,h(1)0,在(2,1)上存在xx0满足h(x0)0,h(x)在(,ln 2)上为减函数,当x(,x0)时,h(x)0,即f(x)0,f(x)在(,x0)上为增函数,当x(x0,ln 2)时,h(x)0,即f(x)0,f(x)在(x0,ln 2)上为减函数,当x(ln 2,0)时,h(x)h(0)0,即f(x)h(0)0,即f(x)0,f(x)在(0,)上为增函数,f(x)在(ln 2,)上只有一个极小值点0,综上可知,f(x)存在唯一的极大值点x0,且x0(2,1)h(x0)0,2x020,f(x0)x02(x01),x0(2,1),当x(2,1)时,f(x0);ln(2,1),f(x0)f;综上知f(x0).【方法技巧】用导数证明不等式的方法(1)利用单调性:若f(x)在a,b上是增函数,则xa,b,则f(a)f(x)f(b);对x1,x2a,b,且x1x2,则f(x1)f(x2)对于减函数有类似结论(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对xD,有f(x)M(或f(x)m)(3)证明f(x)g(x),可构造函数F(x)f(x)g(x),证明F(x)0),当a0时,则f(x)0时,则当x时,f(x)0,f(x)单调递增,当x时,f(x)0时,f(x)在上单调递减,在上单调递增(2)证明令g(x)f(x)2axxeax1xeax1axln x,则g(x)eax1axeax1a(ax1)(x0),设r(x)xeax11(x0),则r(x)(1ax)eax1(x0),eax10,当x时,r(x)0,r(x)单调递增;当x时,r(x)0,r(x)单调递减r(x)maxr0,当0x时,g(x)时,g(x)0,g(x)在上单调递减,在上单调递增,g(x)ming,设t,则gh(t)ln t1(0te2),h(t)0,h(t)在上单调递减,h(t)h(e2)0;g(x)0,故f(x)2axxeax1.题型二利用导数讨论方程根的个数方程的根、函数的零点、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的走势,通过数形结合思想直观求解例2、(2018全国)已知函数f(x)exax2.(1)若a1,证明:当x0时,f(x)1;(2)若f(x)在(0,)上只有一个零点,求a.(1)证明当a1时,f(x)1等价于(x21)ex10.设函数g(x)(x21)ex1,则g(x)(x22x1)ex(x1)2ex.当x1时,g(x)0,h(x)没有零点;()当a0时,h(x)ax(x2)ex.当x(0,2)时,h(x)0.所以h(x)在(0,2)上单调递减,在(2,)上单调递增故h(2)1是h(x)在(0,)上的最小值若h(2)0,即a,h(x)在(0,)上没有零点若h(2)0,即a,h(x)在(0,)上只有一个零点若h(2),因为h(0)1,所以h(x)在(0,2)上有一个零点;由(1)知,当x0时,exx2,所以h(4a)11110,故h(x)在(2,4a)上有一个零点因此h(x)在(0,)上有两个零点综上,当f(x)在(0,)上只有一个零点时,a.【感悟提升】(1)函数yf(x)k的零点问题,可转化为函数yf(x)和直线yk的交点问题(2)研究函数yf(x)的值域,不仅要看最值,而且要观察随x值的变化y值的变化趋势【变式探究】设函数f(x)ex2aln(xa),aR,e为自然对数的底数(1)若a0,且函数f(x)在区间0,)内单调递增,求实数a的取值范围;(2)若0a,试判断函数f(x)的零点个数(2)0aa),记h(x)f(x),则h(x)ex0,知f(x)在区间内单调递增又f(0)10,f(x)在区间内存在唯一的零点x0,即f(x0)0,于是,x0ln.当axx0时,f(x)x0时,f(x)0,f(x)单调递增f(x)minf(x0)2aln2ax0x0a3a23a,当且仅当x0a1时,取等号由0a0,f(x)minf(x0)0,即函数f(x)没有零点题型三利用导数解决生活中的优化问题生活中的实际问题受某些主要变量的制约,解决生活中的优化问题就是把制约问题的主要变量找出来,建立目标问题即关于这个变量的函数,然后通过研究这个函数的性质,从而找到变量在什么情况下可以达到目标最优例3、罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为(2)x万元假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元(1)试写出y关于x的函数关系式;(2)当m96米时,需新建多少个桥墩才能使余下工程的费用y最小?解(1)设需新建n个桥墩,则(n1)xm,即n1.所以yf(x)32n(n1)(2)x32(2)xm2m32(0xm)(2)当m96时,f(x)96160,则f(x)96(64)令f(x)0,得64,所以x16.当0x16时,f(x)0,f(x)在区间(0,16)内为减函数;当16x0,f(x)在区间(16,96)内为增函数,所以f(x)在x16处取得最小值,此时n15.答需新建5个桥墩才能使余下工程的费用y最小【感悟提升】利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式yf(x)(2)求导:求函数的导数f(x),解方程f(x)0.(3)求最值:比较函数在区间端点和使f(x)0的点的函数值的大小,最大(小)者为最大(小)值(4)作答:回归实际问题作答【变式探究】图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD是矩形,弧CmD是半圆,凹槽的横截面的周长为4.若凹槽的强度T等于横截面的面积S与边AB的乘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装设计师与时尚公司长期合作协议
- 智能门锁集成安装与定期检修服务协议
- 滩涂贝类养殖权委托经营管理全面合作协议
- 康养中心护理服务委托专业运营协议
- 跨界脑机接口技术研发与市场推广合作协议
- 留学中介服务及海外院校录取通知书获取及签证申请辅导及生活适应辅导协议
- 耕地流转规模化种植项目委托管理合同
- 班组长现场管理
- 全身人物绘画美术课件
- 瘫痪人员护理要点与规范
- 口腔护理学基础-口腔四手操作技术
- 激光武器课件
- 【公开课】场域与对话-公共空间里的雕塑+课件高中美术人美版(2019)美术鉴赏
- 形势与政策补考2-国开(XJ)-参考资料
- 甘肃省2023年中考语文现代文阅读真题及答案
- 2025年贵州省贵阳市中考历史试题及答案指导
- 《风力发电技术》课件-第三章 机组运行与维护
- 2020-2021苏州景城学校小学数学小升初试卷带答案
- DL∕T 608-2019 300MW~600MW 级汽轮机运行导则
- 环保概论大气污染及防治课件
- 2020年山东省青岛市中考数学试卷
评论
0/150
提交评论