



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分类加法计数原理和分步乘法计数原理第2课时A组1.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法为()A.6种B.5种C.3种D.2种解析:有3+2=5种.答案:B2.如图,一条电路从A处到B处接通时,可构成线路的条数为()A.8B.6C.5D.3解析:从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路,第二步,后一个并联电路接通有3条线路;由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为32=6,故选B.答案:B3.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为()A.2B.4C.6D.8解析:分两类:第一类,公差大于0,有1,2,3,2,3,4,3,4,5,1,3,5,共4个等差数列;第二类,公差小于0,也有4个.根据分类加法计数原理可知,共有4+4=8个不同的等差数列.答案:D4.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,且相邻区域所涂颜色不同,则不同的涂色方法种数为()A.84B.72C.64D.56解析:分为两类:第一类,A和C同色,有433=36(种);第二类,A和C不同色,有4322=48(种).所以不同的涂色方法有36+48=84(种).答案:A5.美女换装游戏中,有5套裙子,4双鞋子,3顶帽子,要求裙、鞋、帽必须且只能各选择一件,则有种装扮方案.解析:根据分步计数原理知,有543=60种.答案:606.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有种.(用数字作答)解析:要完成这件事需分四步,第一步在第一块地上种植,有2种种植方法,第二步在第二块地上种植,有5种种植方法,第三步在第三块地上种植,有4种种植方法,第四步在第4块地上种植,有3种种植方法,由分步乘法计数原理可得,不同的种植方案有2543=120种.答案:1207.在平面直角坐标系内,点P(a,b)的坐标满足ab,且a,b都是集合1,2,3,4,5,6的元素,又点P到原点的距离|OP|5.求这样的点P的个数.解按点P的坐标a将其分为6类:(1)若a=1,则b=5或6,有2个点;(2)若a=2,则b=5或6,有2个点;(3)若a=3,则b=5或6或4,有3个点;(4)若a=4,则b=3或5或6,有3个点;(5)若a=5,则b=1,2,3,4,6,有5个点;(6)若a=6,则b=1,2,3,4,5,有5个点.所以共有2+2+3+3+5+5=20(个)点.B组1.从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8解析:当公比为2时,等比数列可为1,2,4;2,4,8.当公比为3时,等比数列可为1,3,9.当公比为时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个.答案:D2.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A.36个B.18个C.9个D.6个解析:分3步完成,1,2,3这三个数中必有某一个数字被重复使用2次.第一步,确定哪一个数字被重复使用2次,有3种方法;第二步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第三步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有332=18个不同的四位数.答案:B3.某人设计了一个单人游戏,规则如下:先将一枚棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走多少,如果掷出的点数为k(k=1,2,6),则棋子就按逆时针方向行走k个单位,一直循环下去.某人抛掷三次骰子后,棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.36种解析:设抛掷三次骰子所得的点数分别为a,b,c,则a+b+c=12,当a=1时,b+c=11,符合条件的数对(b,c)可以是(5,6),(6,5),共2对;当a=2时,b+c=10,符合条件的数对(b,c)可以是(4,6),(5,5),(6,4),共3对;同理,当a=3时,b+c=9,符合条件的数对(b,c)有4对;当a=4时,b+c=8,符合条件的数对(b,c)有5对;当a=5时,b+c=7,符合条件的数对(b,c)有6对;当a=6时,b+c=6,符合条件的数对(b,c)有5对.所以不同走法共有2+3+4+5+6+5=25种,故选C.答案:C4.一排共9个座位,甲、乙、丙三人按如下方式入座:每人左右两旁都有空座位,且甲必须在乙、丙两人之间,则不同的坐法共有种(用数字作答).解析:从左到右9个位子中,甲只能坐4,5,6三个位子.当甲位于第5个位子时,乙、丙只能在2,3或7,8中的一个位子上;当甲位于第4个位子时,乙、丙肯定有一个位于2,另一个位于6,7,8中的一个位子上;当甲位于第6个位子时,乙、丙肯定有一个位于8,另一个位于2,3,4中的一个位子上,故共有42+32+32=20种.答案:205.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有35=15种选法;第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有32=6种选法;第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有52=10种选法.综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法.答案:316.导学号43944005从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成个不同的对数值.解析:要确定一个对数值,确定它的底数和真数即可,分两步完成:第一步,从这8个数中任取1个作为对数的底数,有8种不同取法;第二步,从剩下的7个数中任取1个作为对数的真数,有7种不同取法.根据分步乘法计数原理,可以组成87=56个对数值.在上述56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,所以满足条件的对数值共有56-4=52个.答案:527.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?1324解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有54(14+33)=260种涂色方法.8.导学号43944006若一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么共有凸数多少个?解共分8类,当中间数为2时,有12=2(个);当中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中国华能集团有限公司吉林分公司本部“优才计划”招聘笔试备考题库及答案解析
- 2026中国中车西安车辆有限公司招聘职位表(151人)笔试模拟试题及答案解析
- 2025年鞍山市公安局面向社会公开招聘警务辅助人员300人笔试备考题库及答案解析
- 2025年中医针灸治疗常见病症模拟考试卷答案及解析
- 2025年耳鼻喉科慢性鼻窦炎影像学诊断能力考核模拟卷答案及解析
- 2025年老年医学老年痴呆鉴别诊断模拟考试答案及解析
- 2025重庆电力高等专科学校合同制员工招聘50人(第三批)笔试模拟试题及答案解析
- 2026北京金融控股集团所属企业校园招聘笔试模拟试题及答案解析
- 2025年中国石油新疆油田分公司秋季高校毕业生招聘360人笔试模拟试题及答案解析
- 2025年合肥一六八新店花园学校教育集团教师招聘1人笔试备考试题及答案解析
- 创新方法大赛理论知识考核试题题库及答案
- 医防融合知识讲座
- 培养幼儿的语言能力
- 《认识几种常见的岩石》说课稿、教案和教学设计
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 广东省监理从业人员网络继续教育平台题库
- YY/T 1268-2023环氧乙烷灭菌的产品追加和过程等效
- 平地机操作规程
- HY/T 0302-2021沸石离子筛法海水提钾工程设计规范
- GB/T 710-2008优质碳素结构钢热轧薄钢板和钢带
- GB/T 18591-2001焊接预热温度、道间温度及预热维持温度的测量指南
评论
0/150
提交评论