阶线性方程)高等数学微积分.ppt_第1页
阶线性方程)高等数学微积分.ppt_第2页
阶线性方程)高等数学微积分.ppt_第3页
阶线性方程)高等数学微积分.ppt_第4页
阶线性方程)高等数学微积分.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. 一阶线性微分方程的标准形式:,上方程称为齐次的.,上方程称为非齐次的.,6.2.4 一阶线性微分方程,例如,线性的;,非线性的.,齐次方程的通解为,(1) 线性齐次方程,2. 一阶线性微分方程的解法,(使用分离变量法),(2) 线性非齐次方程,讨论,两边积分,非齐次方程通解形式,与齐次方程通解相比:,常数变易法,把齐次方程通解中的常数变易为待定函数的方法.,实质: 未知函数的变量代换.,作变换,积分得,一阶线性非齐次微分方程的通解为:,对应齐次方程通解,非齐次方程特解,解,例1,求下列微分方程满足所给初始条件的特解:,解,于是,将方程标准化为,求下列微分方程满足所给初始条件的特解:,解,于是,将方程标准化为,故所求特解为,由初始条件,得,例3 如图所示,平行于 轴的动直线被曲 线 与 截下的线段PQ之长数值上等于阴影部分的面积, 求曲线 .,两边求导得,解,解此微分方程,所求曲线为,已知函数.,解,原方程实际上是标准的线性方程,其中,直接代入通解公式,得通解,求解方程,解,方程变为,这个方程不是一阶线性微分方程,不便求解.,如果,方程改写为,则为一阶线性微分方程,于是对应齐次方程为,解,利用常数变易法,设题设方程,分离变量,即,并积分得,代入原方程,积分得,的通解为,得,故原方程的通解为,例6 求方程,的通解 .,解: 注意 x, y 同号,由一阶线性方程通解公式 , 得,故方程可,变形为,所求通解为,伯努利(Bernoulli)方程的标准形式,方程为线性微分方程.,方程为非线性微分方程.,6.2.5 伯努利方程,解法: 需经过变量代换化为线性微分方程.,求出通解后,将 代入即得,代入上式,解,得,解得,两端除以,令,得,故所求通解为,解,上式即变为一阶线性方程,求方程,的通解.,令,则,于是得到伯努利方程,令,其通解为,解,上式即变为一阶线性方程,求方程,的通解.,令,其通解为,回代原变量,即得到题设方程的通解,例10 用适当的变量代换解下列微分方程:,解,所求通解为,解,代入原式,分离变量法得,所求通解为,另解,小结:,1. 一阶线性方程,方法1 先解齐次方程 , 再用常数变易法.,方法2 用通解公式,化为线性方程求解.,2. 伯努利方程,1.判别下列方程类型:,提示:,可分离 变量方程,齐次方程,线性方程,线性方程,伯努利方程,思考题,解,思考题,2.求微分方程 的通解.,3. 求一连续可导函数,使其满足下列方程:,提示:,令,则有,利用公式可求出,思考题,4. 设有微分方程,其中,试求此方程满足初始条件,的连续解.,解: 1) 先解定解问题,利用通解公式, 得,利用,得,故有,思考题,2) 再解定解问题,此齐次线性方程的通解为,利用衔接条件得,因此有,3) 原问题的解为,( 雅各布第一 伯努利 ),书中给出的伯努利数在很多地方有用,伯努利(1654 1705),瑞士数学家,位数学家.,标和极坐标下的曲率半径公式,1695年,版了他的巨著猜度术,上的一件大事,而伯努利定理则是大数定律的最早形式.,年提出了著名的伯努利方程,他家祖孙三代出过十多,1694年他首次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论