




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五节 两个随机变量的函数的分布,的分布 M=max(X,Y)及N=min(X,Y)的分布 课堂练习 小结 布置作业,在第二章中,我们讨论了一维随机变量函数的分布,现在我们进一步讨论:,当随机变量 X, Y 的联合分布已知时,如何求出它们的函数 Z = g ( X, Y ) 的分布?,例1 若 X、Y 独立,P(X=k)=ak , k=0 , 1 , 2 , P(Y=k)=bk , k=0,1,2, ,求 Z=X+Y 的概率函数.,解,=a0br+a1br-1+arb0,由独立性,r=0,1,2, ,一、 的分布,解 依题意,例2 若 X 和 Y 相互独立,它们分别服从参数为 的泊松分布, 证明Z=X+Y服从参数为,于是,i = 0 , 1 , 2 , ,j = 0 , 1 , 2 , ,的泊松分布.,r = 0 , 1 , ,即Z服从参数为 的泊松分布.,例3 设X和Y的联合密度为 f (x,y) , 求 Z=X+Y 的概率密度.,这里积分区域 D=(x, y): x+y z,解,Z=X+Y的分布函数是:,它是直线 x+y =z 及其左下方的半平面.,化成累次积分,得,固定z和y,对方括号内的积分作变量代换, 令 x=u-y,得,变量代换,交换积分次序,由概率密度与分布函数的关系, 即得Z=X+Y的概率密度为:,由X和Y的对称性, fZ (z)又可写成,以上两式即是两个随机变量和的概率密度的一般公式.,特别地,当 X 和 Y 独立,设 (X,Y) 关于 X , Y 的边缘密度分别为 fX(x) , fY(y) , 则上述两式化为:,下面我们用卷积公式来求Z=X+Y的概率密度.,卷积公式,为确定积分限,先找出使被积函数不为 0 的区域,例4 若 X 和Y 独立, 具有共同的概率密度,求 Z=X+Y 的概率密度 .,解 由卷积公式,也即,暂时固定,故,当 或 时 ,当 时 ,当 时 ,于是,例5 若X和Y 是两个相互独立的随机变量 , 具有相同的分布 N(0,1) , 求 Z=X+Y 的概率密度.,解 由卷积公式,令,得,可见 Z=X+Y 服从正态分布 N(0,2).,用类似的方法可以证明:,若X和Y 独立,结论又如何呢?,此结论可以推广到n个独立随机变量之和的情形,请自行写出结论.,若X和Y 独立 , 具有相同的分布 N(0,1) , 则Z=X+Y 服从正态分布 N(0,2).,有限个独立正态变量的线性组合仍然服从正态分布.,更一般地, 可以证明:,休息片刻再继续,二、M=max(X,Y)及N=min(X,Y)的分布,设 X,Y 是两个相互独立的随机变量,它们的分 布函数分别为FX(x) 和 FY(y),我们来求 M = max(X,Y) 及 N = min(X,Y) 的分布函数.,FM(z)=P(Mz),=P(Xz,Yz),由于 X 和 Y 相互独立,于是得到 M = max(X,Y) 的分布函数为:,1. M = max(X,Y) 的分布函数,即有 FM(z)= FX(z)FY(z),即有 FN(z)= 1-1-FX(z)1-FY(z),=1-P(Xz,Yz),FN(z)=P(Nz),=1-P(Nz),2. N = min(X,Y) 的分布函数,由于 X 和 Y 相互独立,于是得到 N = min(X,Y) 的分布函数为:,设 X1,Xn 是 n 个相互独立的随机变量,它们的分布函数分别为,我们来求 M=max(X1,Xn) 和N=min(X1,Xn)的分布函数.,(i = 1, , n),用与二维时完全类似的方法,可得,N=min(X1,Xn)的分布函数是,M=max(X1,Xn)的分布函数为:,特别地,当X1,Xn相互独立且具有相同分布函数F(x)时,有,例6 设系统 L 由两个相互独立的子系统 连接而成,连接的方式分别为 (i) 串联, (ii) 并联, (iii) 备用 (当系统 损坏时, 系统 开始工作) , 如下图所示.设 的寿命分别为 已知它们的概率密度分别为,其中 且 试分别就以上三种连接方式写出 的寿命 的概率密度.,解,(i) 串联的情况,由于当系统 中有一个损坏时, 系统 L 就停止工作,所以此时 L 的寿命为,因为 X 的概率密度为,所以 X 的分布函数为,当 x 0 时 ,当 x 0 时 ,故,类似地 ,可求得 Y 的分布函数为,于是 的分布函数为,= 1-1-FX(z)1-FY(z),的概率密度为,(ii) 并联的情况,由于当且仅当系统 都损坏时, 系统 L 才停止工作,所以此时 L 的寿命为,故 的分布函数为,于是 的概率密度为,(iii) 备用的情况,因此整个系统 L 的寿命为,由于当系统 损坏时, 系统 才开始工作,当 z 0 时 ,当 z 0 时 ,当且仅当,即 时,上述积分的被积函数不等于零.,故,于是 的概率密度为,需要指出的是,当X1,Xn相互独立且具有相同分布函数F(x)时, 常称,M=max(X1,Xn),N=min(X1,Xn),为极值 .,由于一些灾害性的自然现象,如地震、洪水等等都是极值,研究极值分布具有重要的意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业生产流程的数据优化管理
- 工业设计在智能制造业中的价值体现
- 工业自动化技术的创新与发展趋势探讨
- 工作中的健康保障劳动保护用品的作用及重要性分析
- 工业领域中的新能源技术革新与环保实践
- 工业锅炉高效低耗的节能减排技术
- 工程中的节能技术与设备应用
- 工作流程标准化与执行力推进
- 工程伦理在智慧城市建设中的作用研究
- 工程设计与数据分析的融合应用
- 2021年新教材人教A版高中数学必修第一册第五章三角函数 教学课件
- 掘进机整机出厂检验报告
- 最新版中小学校服选用自查整改报告
- 旅行社的导游管理制度
- DB4201∕T 645-2021 房地产经纪服务规范
- 拨叉综合课程设计
- 压铸件QC工程图
- 常用标准波导和法兰尺寸
- pH 值对柠檬酸缓凝效果影响的研究
- 学校物业服务监督及处罚办法
- 705型试验台技术条件及说明书
评论
0/150
提交评论