冲刺2019高考数学二轮复习核心突破专题22与基本不等式有关的应用题(含解析).docx_第1页
冲刺2019高考数学二轮复习核心突破专题22与基本不等式有关的应用题(含解析).docx_第2页
冲刺2019高考数学二轮复习核心突破专题22与基本不等式有关的应用题(含解析).docx_第3页
冲刺2019高考数学二轮复习核心突破专题22与基本不等式有关的应用题(含解析).docx_第4页
冲刺2019高考数学二轮复习核心突破专题22与基本不等式有关的应用题(含解析).docx_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题22 与基本不等式有关的应用题【自主热身,归纳总结】1、某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元,要使一年的总运费与总存储之和最小,则的值是 .【答案】 30【解析】 总费用240,当且仅当,即时等号成立.即时取得故当米时,有最大值,的最大值为立方米2、用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为米,盖子边长为米设容器的容积为V立方米,则当为_时,V最大【解析】 设为正四棱锥的斜高由已知解得,进而得,因为,所以等式当且仅当, 3、某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m,三块矩形区域的前、后与内墙各保留1 m宽的通道,左、右两块矩形区域分别与相邻的左、右内墙保留3 m宽的通道,如图设矩形温室的室内长为x(m),三块种植植物的矩形区域的总面积为S(m2)(1) 求S关于x的函数关系式;(2) 求S的最大值【解析】 (1) 由题设得S(x8)2x916,x(8,450)(6分)(2) 因为8x450,所以2x2 240,(8分)当且仅当x60时等号成立(10分)从而S676.(12分)答:当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为676 m2.(14分)4、如图,某小区拟在空地上建一个占地面积为2400m2的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2m.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积 在利用基本不等式求函数的最值时,一定要注意验证基本不等式成立的三个条件,即一正二定三相等如果等号成立的条件不具备,就应该研究函数的单调性来求函数的最值5、某兴趣小组要测量电视塔AE的高度H(单位:m)示意图如图所示,垂直放置的标杆BC的高度h4 m,仰角ABE,ADE.(1) 该小组已测得一组,的值,tan1.24,tan1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度若电视塔的实际高度为125 m,试问d为多少时,最大?【解析】 (1) 由AB,BD,AD及ABBDAD,得,解得H124.因此算出的电视塔的高度H是124 m.(2) (1) 由题知dAB,则tan.由ABADBD,得tan,所以tan(),当且仅当d55时取等号又0,所以当d55时,tan()的值最大因为00)表示的曲线上,其中k与发射方向有关炮的射程是指炮弹落地点的横坐标(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由【解析】 (1)令y0,得kx(1k2)x20,由实际意义和题设条件知x0,k0,故x10,当且仅当k1时取等号所以炮的最大射程为10km.(2) 因为a0,所以炮弹可击中目标等价于存在k0,使3.2ka(1k2)a2成立,即关于k的方程a2k220aka2640有正根,所以判别式(20a)24a2(a264)0,解得a6,所以0,所以4x2,即x,所以44x2.答:四根木条总长的取值范围为.(6分)列表如下:af(a)0f(a)极大值所以当a时,f(a)maxf,即Smax.答:窗口ABCD面积的最大值为 m2.(16分) 解法2 设AB所在的木条长为am,BC所在的木条长为bm.由条件知,2a2b6,即ab3.因为a,b(0,2),所以b3a(0,2),从而a,b(1,2)(8分)由于AB2,BC2,S矩形ABCD4,(10分)因为,(14分)当且仅当ab(1,2)时,S矩形ABCD.答:窗口ABCD面积的最大值为 m2.(16分) 第(1)问中,最容易出错的地方是忽略“四根木条将圆分成9个区域”这一条件,从而导致变量的取值范围出错 本题的本质是直线与圆的位置关系问题,第(1)问是由圆心到直线的距离的要求来求弦长的范围;而第(2)问是已知弦长的要求来求圆心到直线的距离的范围,弄清这一本质,问题就很容易求解【关联3】、一位创业青年租用了一块边长为1百米的正方形田地ABCD来养蜂、产蜜与售蜜,他在正方形的边BC,CD上分别取点E,F(不与正方形的顶点重合),连结AE,EF,FA,使得EAF45. 现拟将图中阴影部分规划为蜂源植物生长区,AEF部分规划为蜂巢区,CEF部分规划为蜂蜜交易区. 若蜂源植物生长区的投入约为2105元/百米2,蜂巢区与蜂蜜交易区的投入约为105元/百米2,则这三个区域的总投入最少需要多少元? 解法1设阴影部分面积为S,三个区域的总投入为T.则T2105S105(1S)105(S1),从而只要求S的最小值即可(2分)设EAB(045),在ABE中,因为AB1,B90,所以BEtan,则SABEABBEtan,(4分)又DAF45,同理得SADFtan(45),(6分)所以Stantan(45)tan,(8分)令xtan(0,1),S (10分) (22)1,当且仅当x1,即x1时取等号(12分)从而三个区域的总投入T的最小值约为105元(14分)(说明:这里S的最小值也可以用导数来求解:因为S,则由S0,得x1.当x(0,1)时,S0,S递增所以当x1时,S取得最小值1.解法2 设阴影部分面积为S,三个区域的总投入为T.则T2105S105(1S)105(S1),从而只要求S的最小值即可(2分)如图,以点A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系设直线AE的方程为ykx(0k1),即ktanEAB,因为EAF45,所以直线AF的斜率为tan(EAB45),从而直线AF方程为yx.(6分)在方程ykx中,令x1,得E(1,k),所以SEABABBEk;在方程yx中,令y1,得F,所以SADFADDF;从而S,k(0,1)(10分)以下同解法一(14分)解法3 设阴影部分面积为S,三个区域的总投入为T.则T2105S105(1S)105(S1),从而只要求S的最小值即可(2分)设DAF,BAE(0,45),则S(tantan)(4分)因为90EAF45,所以tan()1,(8分)所以tantan1tantan12,(10分)即2S1S2,解得S1,即S取得最小值为1,从而三个区域的总投入T的最小值约为105元(14分)例2、某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元此外,还需要投入其他成本(如施肥的人工费等)百元已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求记该棵水蜜桃树获得的利润为(单位:百元)(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?法二:,由得,故当时,在上单调递增;当时,在上单调递减;故答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元【变式1】、 某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P(其中0xa,a为正常数)已知生产该批产品还需投入成本6万元(不含促销费用),产品的销售价格定为元/件(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 当促销费用投入多少万元时,该公司的利润最大?【解析】 (1) 由题意知,yPx6.(3分)将P代入化简得y19x(0xa)(5分)(2) y2222310,当且仅当x2,即x2时,上式取等号(8分)所以当a2时,促销费用投入2万元时,厂家的利润最大;(9分)由y19x,得y,当x0,此时函数y在0,2上单调递增,所以当a2时,函数y在0,a上单调递增,(11分)所以当xa时,函数有最大值即促销费用投入a万元时,厂家的利润最大(12分)综上,当a2时,促销费用投入2万元,厂家的利润最大;当a2时,促销费用投入a万元,厂家的利润最大(14分) 【变式2】、 某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q(x0)已知生产此产品的年固定投入为4.5万元,每生产1万件此产品仍需再投入32万元,且能全部销售完若每件销售价定为:“平均每件生产成本的150%”与“年平均每件所占广告费的25%”之和 (1) 试将年利润W(万元)表示为年广告费x(万元)的函数; (2) 当年广告费投入多少万元时,企业年利润最大?最大利润为多少? 【解析】(1)由题意可得,产品的生产成本为(32Q4.5)万元, 每件销售价为150%25%年销售收入为(150%25%)Q(32Q)x年利润W(32Q)x(32Q)x(32Q)x16Qx16x,(x0) (2)令x1t(t1),则W16(t1)643t673()t1,24,即W55,当且仅当,即t8时,W有最大值55,此时x7 即当年广告费为7万元时,企业利润最大,最大值为55万元【变式3】、 过去的2013年,我国多地区遭遇了雾霾天气,引起口罩热销某品牌口罩原来每只成本为6元,售价为8元,月销售5万只(1) 据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润月销售总收入月总成本),该口罩每只售价最多为多少元?(2) 为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价x(x9)元,并投入(x9)万元作为营销策略改革费用据市场调查,每只售价每提高0.5元,月销售量将相应减少万只,则当每只售价x为多少时,下月的月总利润最大?并求出下月最大总利润【解析】 (1) 设每只售价为x元,则月销售量为万只由已知得(x6)(86)5,(3分)所以x2x0,即2x253x2960.(4分)解得8x.(5分)即每只售价最多为18.5元(6分)(2) 下月的月总利润y(x6)(x9)(9分) x x .(10分)因为x9,所以2,(12分)当且仅当,即x10,等号成立,所以ymin14.(13分)答:当x10时,下月的月总利润最大,且最大利润为14万元(14分)【变式4】、 某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置现将工人分成两组分别加工甲型和乙型装置设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时设f(x)t1t2.(1) 求f(x)的【解析】式,并写出其定义域; (2) 当x等于多少时,f(x)取得最小值? 本题分为两个阶段:建模和解模,建模阶段就是用自变量x表示时间t1,t2.解模阶段就是根据(2) 解法1(基本不等式) f(x)1 00

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论