高中数学函数的单调性与导数课件新人教A版选修.ppt_第1页
高中数学函数的单调性与导数课件新人教A版选修.ppt_第2页
高中数学函数的单调性与导数课件新人教A版选修.ppt_第3页
高中数学函数的单调性与导数课件新人教A版选修.ppt_第4页
高中数学函数的单调性与导数课件新人教A版选修.ppt_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 G 且 x 1 x 2 时,1)都有 f ( x 1 ) f ( x 2 ),,则 f ( x ) 在G 上是增函数;,2)都有 f ( x 1 ) f ( x 2 ),,则 f ( x ) 在G 上是减函数;,若 f(x) 在G上是增函数或减函数,,增函数,减函数,则 f(x) 在G上具有严格的单调性。,G 称为单调区间,复习引入,G = ( a , b ),以前,我们主要采用定义法去判断函数的单调性. 在函数y=f(x) 比较复杂的情况下,比较f(x1)与f(x2)的大小并不容易. 如果利用导数来判断函数的单调性就比较简单.,判断函数单调性有哪些方法?,图象法,已知函数,观 察:,下图(1)表示高台跳水运动员的高度 h 随时间 t 变化的函数 的图象, 图(2)表示高台跳水运动员的速度 v 随时间 t 变化的函数 的图象. 运动员从起跳到最高点, 以及从最高点到入水这两段时间的运动状态有什么区别?,a,a,b,b,t,t,v,h,O,O,运动员从起跳到最高点,离水面的高度h随时间t 的增加而增加,即h(t)是增函数.相应地,从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即h(t)是减函数.相应地,(1),(2),x,y,O,x,y,O,x,y,O,x,y,O,y = x,y = x2,y = x3,观察下面一些函数的图象, 探讨函数的单调性与其导函数正负的关系.,在某个区间(a,b)内,如果 ,那么函数 在这个区间内单调递增; 如果 , 那么函数 在这个区间内单调递减.,结 论,例1 已知导函数 的下列信息:,当1 x 4 时,当 x 4 , 或 x 1时,当 x = 4 , 或 x = 1时,试画出函数 的图象的大致形状.,解:,当1 x 4 时, 可知 在此区间内单调递增;,当 x 4 , 或 x 1时, 可知 在此区间内单调递减;,当 x = 4 , 或 x = 1时,综上, 函数 图象的大致形状如右图所示.,练习 P26 2,2.函数 的图象如图所示, 试画出导函数 图象的大致形状,例2 判断下列函数的单调性, 并求出单调区间:,解:,(1) 因为 , 所以,因此, 函数 在 上单调递增.,(2) 因为 , 所以,当 , 即 时, 函数 单调递增;,当 , 即 时, 函数 单调递减.,例2 判断下列函数的单调性, 并求出单调区间:,解:,(3) 因为 , 所以,因此, 函数 在 上单调递减.,例2 判断下列函数的单调性, 并求出单调区间:,(4) 因为 , 所以,当 , 即 时, 函数 单调递增;,当 , 即 时,函数 单调递减.,例2 判断下列函数的单调性, 并求出单调区间:,求可导函数f(x)单调区间的步骤: (1)求f(x) (2)解不等式f(x)0(或f(x)0) (3)确认并指出递增区间(或递减区间),练习 P26 1,1.判断下列函数的单调性, 并求出单调区间:,1.判断下列函数的单调性, 并求出单调区间:,函数单调性与导数正负的关系,注意:应正确理解 “ 某个区间 ” 的含义,它必是定义域内的某个区间。,练习、判断下列函数的单调性,并求出单调区间。,(3) f(x)= sinx-x x,p,(0, ),(1)求函数的定义域 (2)求函数的导数 (3)令f(x)0以及f(x)0,求自变量x的取值范围 (4)下结论, 写出函数的单调区间。,总结:用“导数法” 求单调区间的步骤:,练习:,证明可导函数f(x)在(a,b)内的单调性的方法: (1)求f(x) (2)确认f(x)在(a,b)内的符号 (3)作出结论,例 求证函数f(x)=2x3-6x2+7在(0,2)内是减函数,1. 对x(a,b),如果f/(x)0,但f/(x)不恒 为0,则f(x)在区间(a,b)上是增函数;,2. 对x(a,b),如果f/(x)0,但f/(x)不恒 为0,则f(x)在区间(a,b)上是减函数;,补充结论,解:由已知得,因为函数在(0,1上单调递增,例3 如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h与时间t的函数关系图象.,(A),(B),(C),(D),h,t,O,h,t,O,h,t,O,h,t,O,一般地, 如果一个函数在某一范围内导数的绝对值较大, 那么函数在这个范围内变化得快, 这时, 函数的图象就比较“陡峭”(向上或向下); 反之, 函数的图象就“平缓”一些.,如图,函数 在 或 内的图象“陡峭”,在 或 内的图象“平缓”.,例 求证:方程 只有一个根。,知识小结:,一般地,函数yf(x)在某个区间内: 如果 ,则 f(x)在该区间是增函数。 如果 ,则 f(x)在该区间是减函数。,求单调区间的步骤 : (1)求函数的定义域 (2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论