




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.3圆的方程最新考纲考情考向分析掌握圆的标准方程与一般方程.以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(xa)2(yb)2r2(r0)圆心为(a,b)半径为r一般式x2y2DxEyF0充要条件:D2E24F0圆心坐标:半径r概念方法微思考1.二元二次方程Ax2BxyCy2DxEyF0表示圆的条件是什么?提示2.已知C:x2y2DxEyF0,则“EF0且D0”是“C与y轴相切于原点”的什么条件?提示由题意可知,C与y轴相切于原点时,圆心坐标为,而D可以大于0,所以“EF0且Dr2;(3)点在圆内:(x0a)2(y0b)20.()(5)方程(xa)2(yb)2t2(tR)表示圆心为(a,b),半径为t的圆.()题组二教材改编2.P124A组T2圆心为(1,1)且过原点的圆的方程是()A.(x1)2(y1)21B.(x1)2(y1)21C.(x1)2(y1)22D.(x1)2(y1)22答案D解析因为圆心为(1,1)且过原点,所以该圆的半径r,则该圆的方程为(x1)2(y1)22.3.P132A组T3以点(3,1)为圆心,并且与直线3x4y0相切的圆的方程是()A.(x3)2(y1)21B.(x3)2(y1)21C.(x3)2(y1)21D.(x3)2(y1)21答案A4.P124A组T4圆C的圆心在x轴上,并且过点A(1,1)和B(1,3),则圆C的方程为_.答案(x2)2y210解析设圆心坐标为C(a,0),点A(1,1)和B(1,3)在圆C上,|CA|CB|,即,解得a2,圆心为C(2,0),半径|CA|,圆C的方程为(x2)2y210.题组三易错自纠5.若方程x2y2mx2y30表示圆,则m的取值范围是()A.(,)(,)B.(,2)(2,)C.(,)(,)D.(,2)(2,)答案B解析将x2y2mx2y30化为圆的标准方程得2(y1)22.由其表示圆可得20,解得m2.6.(2018浙江诸暨中学期中)点P(5a1,12a)在圆(x1)2y21的内部,则a的取值范围是()A.|a|1B.aC.|a|D.|a|答案D解析由圆(x1)2y21,得圆心坐标为(1,0),半径r1,由点P在圆(x1)2y21内部得(5a11)2(12a)21,解得|a|0),又圆与直线4x3y0相切,1,解得a2或a(舍去).圆的标准方程为(x2)2(y1)21.故选A.题型一圆的方程例1(1)已知圆E经过三点A(0,1),B(2,0),C(0,1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.2y2B.2y2C.2y2D.2y2答案C解析方法一(待定系数法)根据题意,设圆E的圆心坐标为(a,0)(a0),半径为r,则圆E的标准方程为(xa)2y2r2(a0).由题意得解得所以圆E的标准方程为2y2.方法二(待定系数法)设圆E的一般方程为x2y2DxEyF0(D2E24F0),则由题意得解得所以圆E的一般方程为x2y2x10,即2y2.方法三(几何法)因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y2(x1)上.又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为.则圆E的半径为|EB|,所以圆E的标准方程为2y2.(2)已知圆C的圆心在直线xy0上,圆C与直线xy0相切,且在直线xy30上截得的弦长为,则圆C的方程为_.答案(x1)2(y1)22解析方法一所求圆的圆心在直线xy0上,设所求圆的圆心为(a,a).又所求圆与直线xy0相切,半径r|a|.又所求圆在直线xy30上截得的弦长为,圆心(a,a)到直线xy30的距离d,d22r2,即2a2,解得a1,圆C的方程为(x1)2(y1)22.方法二设所求圆的方程为(xa)2(yb)2r2(r0),则圆心(a,b)到直线xy30的距离d,r2,即2r2(ab3)23.由于所求圆与直线xy0相切,(ab)22r2.又圆心在直线xy0上,ab0.联立,解得故圆C的方程为(x1)2(y1)22.方法三设所求圆的方程为x2y2DxEyF0,则圆心为,半径r,圆心在直线xy0上,0,即DE0,又圆C与直线xy0相切,即(DE)22(D2E24F),D2E22DE8F0.又知圆心到直线xy30的距离d,由已知得d22r2,(DE6)2122(D2E24F),联立,解得故所求圆的方程为x2y22x2y0,即(x1)2(y1)22.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.跟踪训练1一个圆与y轴相切,圆心在直线x3y0上,且在直线yx上截得的弦长为2,则该圆的方程为_.答案x2y26x2y10或x2y26x2y10解析方法一所求圆的圆心在直线x3y0上,设所求圆的圆心为(3a,a),又所求圆与y轴相切,半径r3|a|,又所求圆在直线yx上截得的弦长为2,圆心(3a,a)到直线yx的距离d,d2()2r2,即2a279a2,a1.故所求圆的方程为(x3)2(y1)29或(x3)2(y1)29,即x2y26x2y10或x2y26x2y10.方法二设所求圆的方程为(xa)2(yb)2r2,则圆心(a,b)到直线yx的距离为,r27,即2r2(ab)214.由于所求圆与y轴相切,r2a2,又所求圆的圆心在直线x3y0上,a3b0,联立,解得或故所求圆的方程为(x3)2(y1)29或(x3)2(y1)29,即x2y26x2y10或x2y26x2y10.方法三设所求圆的方程为x2y2DxEyF0,则圆心坐标为,半径r.在圆的方程中,令x0,得y2EyF0.由于所求圆与y轴相切,0,则E24F.圆心到直线yx的距离为d,由已知得d2()2r2,即(DE)2562(D2E24F).又圆心在直线x3y0上,D3E0.联立,解得或故所求圆的方程为x2y26x2y10或x2y26x2y10.题型二与圆有关的轨迹问题例2已知RtABC的斜边为AB,且A(1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解(1)方法一设C(x,y),因为A,B,C三点不共线,所以y0.因为ACBC,且BC,AC斜率均存在,所以kACkBC1,又kAC,kBC,所以1,化简得x2y22x30.因此,直角顶点C的轨迹方程为x2y22x30(y0).方法二设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|AB|2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x1)2y24(y0).(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x,y,所以x02x3,y02y.由(1)知,点C的轨迹方程为(x1)2y24(y0),将x02x3,y02y代入得(2x4)2(2y)24,即(x2)2y21.因此动点M的轨迹方程为(x2)2y21(y0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法:直接根据题目提供的条件列出方程.定义法:根据圆、直线等定义列方程.几何法:利用圆的几何性质列方程.相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2设定点M(3,4),动点N在圆x2y24上运动,以OM,ON为两边作平行四边形MONP,求点P的轨迹.解如图,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.因为平行四边形的对角线互相平分,所以,整理得又点N(x0,y0)在圆x2y24上,所以(x3)2(y4)24.所以点P的轨迹是以(3,4)为圆心,2为半径的圆,直线OM与轨迹相交于两点和,不符合题意,舍去,所以点P的轨迹为(x3)2(y4)24,除去两点和.题型三与圆有关的最值问题例3已知点(x,y)在圆(x2)2(y3)21上,求xy的最大值和最小值.解设txy,则yxt,t可视为直线yxt在y轴上的截距,xy的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y轴上的截距.由直线与圆相切得圆心到直线的距离等于半径,即1,解得t1或t1.xy的最大值为1,最小值为1.引申探究1.在本例的条件下,求的最大值和最小值.解可视为点(x,y)与原点连线的斜率,的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为ykx,由直线与圆相切得圆心到直线的距离等于半径,即1,解得k2或k2,的最大值为2,最小值为2.2.在本例的条件下,求的最大值和最小值.解,求它的最值可视为求点(x,y)到定点(1,2)的距离的最值,可转化为求圆心(2,3)到定点(1,2)的距离与半径的和或差.又圆心到定点(1,2)的距离为,的最大值为1,最小值为1.思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x,y)有关代数式的最值的常见类型及解法.形如u型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;形如taxby型的最值问题,可转化为动直线的截距的最值问题;形如(xa)2(yb)2型的最值问题,可转化为动点到定点(a,b)的距离的平方的最值问题.跟踪训练3已知M(x,y)为圆C:x2y24x14y450上任意一点,且点Q(2,3).(1)求|MQ|的最大值和最小值;(2)求的最大值和最小值;(3)求yx的最大值和最小值.解(1)由圆C:x2y24x14y450,可得(x2)2(y7)28,圆心C的坐标为(2,7),半径r2.又|QC|4,|MQ|max426,|MQ|min422.(2)可知表示直线MQ的斜率k.设直线MQ的方程为y3k(x2),即kxy2k30.由直线MQ与圆C有交点,2,可得2k2,的最大值为2,最小值为2.(3)设yxb,则xyb0.当直线yxb与圆C相切时,截距b取到最值,2,b9或b1.yx的最大值为9,最小值为1.1.若a,则方程x2y2ax2ay2a2a10表示的圆的个数为()A.0B.1C.2D.3答案B解析方程x2y2ax2ay2a2a10表示圆的条件为a24a24(2a2a1)0,即3a24a40,解得2a0,5,b1.16.(2018浙江省绍兴诊断)已知动点P(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025节能器采购合同书
- 2025解除房屋租赁合同协议书版本
- 2025江苏徐州市泉山国有资产投资经营有限公司部门负责人选聘2人(二)模拟试卷附答案详解(完整版)
- 2025年北京市二手车交易委托代理合同
- 2025年荆门市“招硕引博”考试考前自测高频考点模拟试题有答案详解
- 2025年“才聚齐鲁成就未来”山东泰安市泰山财产保险股份有限公司河南分公司社会招聘4人考前自测高频考点模拟试题及1套完整答案详解
- 2025企业集体合同协议
- 2025年度湖北省纪委监委考试录用公务员专业测试考前自测高频考点模拟试题及一套答案详解
- 经济学考试题库及答案
- 邮政财务考试题库及答案
- 湖南安全员c3考试试题及答案
- 2025年中学生心理健康测试题及答案
- 产品品质及售后无忧服务承诺书3篇
- 2025年第11个全国近视防控宣传教育月活动课件
- 患者跌倒的预防及管理课件
- 医疗设备验收单
- 质量体系调查表模板(空)
- 新型干法水泥回转窑系统介绍
- 竞选大学心理委员ppt模板
- T∕CEPPEA 5008-2021 城市电缆线路岩土工程勘察规范_
- 医师执业注册健康体检表
评论
0/150
提交评论