




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
归 纳 推 理,前提 当n=0时,n2-n+11=11 当n=1时,n2-n+11=11 当n=2时,n2-n+11=13 当n=3时,n2-n+11=17 当n=4时,n2-n+11=23 当n=5时,n2-n+11=31,结论 对于所有的自然数n, n2-n+11的值都是质数,11,11,13,17,23,31都是质数,“任何一个大于2的偶数都可以表示为两个素数之和”,-歌德巴赫猜想,结论:,哥德巴赫猜想 (Goldbach Conjecture) 目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理 .“任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。,从个别事实中推演出一般性的结论,称为归纳推理.,归纳推理的几个特点:,1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.,2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.,3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.,归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.,需证明,归纳推理的一般步骤:,试验、观察,概括、推广,猜测一般性结论,例1.已知数列an的第1项a1=1,且 (n=1 , 2 , ),试归纳出这个数列的通项公式.,分别把n=1,2,3,4代入 得:,归纳:,可用数学归纳法证明这个猜想是正确的.,取倒数得:,解法2、构造法,例2.有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大的金属片不能放在较小的金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?,n=1时,n=2时,n=1时,n=3时,n=2时,n=1时,n=2时,n=1时,n=3时,n=4时,n=3时,n=2时,n=1时,n=4时,n=3时,n=2时,n=1时,归纳:,例3(2004春季上海)根据图中5个图形及相应点的个数的变化规律,试猜测第n个图形中有 个点.,(1),(2),(3),(4),(5),例4(2005年广东)设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,f(4)= , 当n4时,f(n)= .(用n表示),累加得:,例2:数一数图中的凸多面体的面数F、顶点数V和棱数E,然后用归纳法推理得出它们之间的关系.,4,6,4,5,5,6,5,9,8,4,6,4,5,5,6,5,9,8,6,6,8,6,12,8,12,6,10,4,6,4,5,5,6,5,9,8,6,6,8,6,12,8,12,6,10,7,7,9,16,9,10,15,10,15,F+V-E=2,猜想,欧拉公式,(2001年上海)已知两个圆x2+y2=1:与x2+(y-3)2=1,则由式减去式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为:,设圆的方程为(x-a)2+(y-b)2=r2与 (x-c)2+(y-d)2=r2(ac或bd), 则由式减去式可得上述两圆的对称轴 方程.,小结,2.归纳推理的一般步骤:,(1)通过观察个别情况发现某些相同性质;,(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).,1.什么是归纳推理(简称归纳)?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能传感集成与隔套健康状态实时监测技术瓶颈
- 新能源背景下双速总成与动力电池包的耦合交互机制
- 2025年初中劳技考试题及答案
- 新型高分子材料在分丝滚筒表面改性的界面结合强度优化策略
- 新型纳米涂层在极端工况下提升推杆耐久性的技术路径探索
- 2025年四十二中数学试卷及答案
- 数据驱动的刮沫撇渣机性能评估体系构建与行业对标实践
- 数字孪生技术在承口弯头全生命周期可靠性预测中的应用瓶颈
- 数字化生产模式下个性化定制与标准化生产的成本平衡难题研究
- 政策合规性框架下数据安全与知识产权边界划分
- 冷库液氨安全培训课件
- 2025年机组A级检修安健环管理方案
- 中国合成生物项目创业投资方案
- 康复科院感染管理制度
- 人工湖设计方案
- 联合办刊协议书
- 人民币反假知识培训
- 夫妻吵架冷战协议书
- 网络安全等级保护备案表(2025版)
- 《湿地生态的保护与利用:课件》
- 情人合同协议书短
评论
0/150
提交评论