




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题名称:25.3用频率估计概率1、基础夯实单项选择题:(共10道需有答案和解析)1、绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频数0.9600.9400.9550.9500.9480.9560.950则绿豆发芽的概率估计值是()A0.96 B0.95 C0.94 D0.90答案:B分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比本题考查了绿豆种子发芽的概率的求法对于不同批次的绿豆种子的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法解答: =(0.960+0.940+0.955+0.950+0.948+0.956+0.950)70.95,当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95故选B2、某人在做掷硬币实验时,投掷m次,正面朝上有n次(即正面朝上的频率是p= )则下列说法中正确的是()AP一定等于, BP一定不等于, C多投一次,P更接近, D投掷次数逐渐增加,P稳定在附近答案:B分析:考查利用频率估计概率大量反复试验下频率稳定值即概率利用频率估计概率时,只有做大量试验,才能用频率会计概率解答:硬币只有正反两面,投掷时正面朝上的概率为,根据频率的概念可知投掷次数逐渐增加,P稳定在附近故选D3、小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是()A两次摸到红色球 B两次摸到白色球 C两次摸到不同颜色的球 D先摸到红色球,后摸到白色球答案:C分析:考查利用频率估计概率大量反复试验下频率稳定值即概率根据用频率估计概率的意义,从四个选项中选出出现的机会约为50%的情况解答:摸到红色和白色球的概率均为,反复多次实验后,发现某种“状况”出现的机会约为50%,这种状况可能是两次摸到不同颜色的球故选C4、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A28个 B30个 C36个 D42个答案:A分析:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可关键是根据白球和黑球的比得到相应的关系式共摸球400次,其中88次摸到黑球,那么有312次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为88:312;已知有8个黑球,那么按照比例,白球数量即可求出解答:由题意得:白球有31288828个故选A5、为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是()A袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率B用计算器随机地取不大于10的正整数,计算取得奇数的概率C随机掷一枚质地均匀的硬币,计算正面朝上的概率D如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率答案:D分析:此题考查了模拟实验,选择和掷一个质地均匀的骰子类似的条件的试验验证掷一个质地均匀的骰子的概率,是一种常用的模拟试验的方法分析每个试验的概率后,与原来掷一个质地均匀的骰子的概率比较即可解答: A、袋中装有1个红球一个绿球,它们出颜色外都相同,随机摸出红球的概率是12,故本选项正确;B、用计算器随机地取不大于10的正整数,取得奇数的概率是,故本选项正确;C、随机掷一枚质地均匀的硬币,正面朝上的概率是,故本选项正确;D、将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,指针指向甲的概率是,故本选项错误;故选D6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A10个B20个 C30个 D无法确定答案:B分析:考查利用频率估计概率大量反复试验下频率稳定值即概率关键是得到关于黑球的概率的等量关系先由频率=频数数据总数计算出频率,再由题意列出方程求解即可解答:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则解得x=20故选B7、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A40只 B25只 C15只 D3只答案:D分析:此题考查概率的应用任意抓出50只中有记号的只数=50做记号的小鸡概率先计算出做记号的小鸡概率为,再任意抓出50只,则其中做有记号的大约是只解答:小鸡孵化场孵化出1000只小鸡,在60只上做记号,则做记号的小鸡概率为,再任意抓出50只,其中做有记号的大约是只故选D8、一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A6 B10 C18 D20答案:D分析:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率关键是根据黄球的频率得到相应的等量关系在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解解答:由题意可得,100%=30%,解得,n=20(个)故估计n大约有20个故选:D 9、一个盒子里装有若干个红球和白球,每个球除颜色以外都相同5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A红球比白球多 B白球比红球多 C红球,白球一样多 D无法估计答案:A分析:考查利用频率估计概率大量反复试验下频率稳定值即概率易错点是得到红球可能的情况数计算出摸出红球的平均数后分析,若得到的平均数大于5,则说明红球比白球多,反之则不是解答: 5位同学摸到红球的频率的平均数为,红球比白球多故选A10、关于频率和概率的关系,下列说法正确的是()A频率等于概率;B当实验次数很大时,频率稳定在概率附近;C当实验次数很大时,概率稳定在频率附近;D实验得到的频率与概率不可能相等答案:B分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果解答: A、频率只能估计概率; B、正确; C、概率是定值; D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同故选B2、能力提升非选择题(共5道)1、有一箱规格相同的红、黄两种颜色的小塑料球共1000个为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后发现摸到红球的频率约为0.6,据此可以估计红球的个数约为_答案:600个分析:本题考查用频率估计概率,因为摸到红球的频率约为0.6,红球所占的百分比是60%,从而可求出解因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数解答:摸到红球的频率约为0.6,红球所占的百分比是60%100060%=600(个)故答案为:600个 2、在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是_答案:接近分析:实验次数越多,出现某个数的变化趋势越接近于它所占总数的概率随着试验次数的增多,变化趋势接近与理论上的概率解答:如果试验的次数增多,出现数字“1”的频率的变化趋势是接近3、从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_(精确到0.1)答案:0.8分析:本题比较容易,考查利用频率估计概率大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比本题考查的是用频率估计概率,6批次种子粒数从100粒大量的增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,精确到0.1,即为0.8解答:种子粒数5000粒时,种子发芽的频率趋近于0.801,估计种子发芽的概率为0.801,精确到0.1,即为0.8故本题答案为:0.8 4、晓刚用瓶盖设计了一个游戏:任意掷出一个瓶盖,如果盖面朝上则甲胜,如果盖面朝下则乙胜,你认为这个游戏_(是否公平);如果以硬币代替瓶盖,同样做上述游戏,你认为这个游戏_(是否公平)答案:不公平,公平分析:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平根据实际情况即可解答瓶盖不是均匀的,而硬币均匀,所以两种情况不一样解答:因为瓶盖不是均匀的,故盖面朝上和盖面朝下的机会不是均等的;故这个游戏不公平如果以硬币代替瓶盖,因为硬币是均匀的,故正面与反面向上机会相等;故这个游戏公平 5、一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%则n很可能是_枚答案:8分析:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=根据黑色棋子的概率公式=80%,列出方程求解即可解答:不透明的布袋中的棋子除颜色不同外,其余均相同,共有n+2个棋子,其中黑色棋子n个,根据古典型概率公式知:P(黑色棋子)=80%,解得n=8故答案为:8 3、个性创新选答题(共1-3个)1、某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,易错点是获得购物券得到金额的平均数(1)根据概率的求法,找准两点:、符合条件的情况数目;、全部情况的总数二者的比值就是其发生的概率(2)算出每张奖券获得的购物券金额的平均数,与10比较即可解答:(1)或5%;(2)平均每张奖券获得的购物券金额为100+50+20+0=14(元),1410,选择抽奖更合算 2、研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?分析:此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球解答:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,红球所占百分比为2050=40%,黄球所占百分比为3050=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,总球数为8=100,红球数为10040%=40,答:盒中红球有40个 3、端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同小明喜欢吃红枣馅的粽子(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率你认为这样模拟正确吗?试说明理由分析:树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,(1)此题属于不放回实验;(2)此题模拟的为放回实验;所以模拟的不正确解答:(1)P(两只都为红枣馅)=16;(3分)(2)这样模拟不正确(4分)理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种(5分)P(点数3,4向上)=p(两只均为红枣馅)(6分)这样模拟不正确(7分) 4、其他题型(自由添加)1、如图,均匀的正四面体的各面依次标有1,2,3,4四个数字小明做了60次投掷试验,结果统计如下:朝下数字1234出现的次数16201410(1)计算上述试验中“4朝下”的频率是_;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率答案:(1)分析:本题主要考查列表法与树状图法求概率,以及频率的意义,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比(1)先由频率=频数试验次数算出频率;(2)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率(3)列表列举出所有的可能的结果,然后利用概率公式解答即可解答:(1)“4朝下”的频率:;故答案为:(2)这种说法是错误的在60次试验中,“2朝下”的频率为并不能说明“2朝下”这一事件发生的概率为只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.(3)随机投掷正四面体两次,所有可能出现的结果如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津城市建设管理职业技术学院《环境工程安全生产》2023-2024学年第二学期期末试卷
- 河北司法警官职业学院《创新创业理论与实务》2023-2024学年第二学期期末试卷
- 江西师范大学科学技术学院《材料科学基础应用研究》2023-2024学年第二学期期末试卷
- 伊犁师范大学《工程制图II》2023-2024学年第二学期期末试卷
- 衡阳师范学院南岳学院《环境与化学》2023-2024学年第二学期期末试卷
- 西安医学高等专科学校《会展概论》2023-2024学年第二学期期末试卷
- 中国传媒大学《大众传播调查方法与写作实训》2023-2024学年第二学期期末试卷
- 2024年CO2气体保护药芯焊丝资金申请报告代可行性研究报告
- 劳动技术教育实施途径
- 2024年玉米酒精糟回收蛋白饲料成套设备(DDGS)项目资金筹措计划书代可行性研究报告
- 露营地合伙人合同协议书范本
- 人人学点营销学(请分别进入班级观看视频不要在默认班级观看观看无效)学习通超星期末考试答案章节答案2024年
- 高效能人士的七个习惯(课件)
- 2024年315消费者权益保护知识竞赛题库及答案(完整版)
- 2024年离婚不离家互不干涉的婚姻协议书范文
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务1)试题及答案
- 保证不分手不离婚的协议书范文
- 水质监测服务投标方案(技术标)
- 内容质量评价体系
- 2025年中考作文试题预测及范文
- 2023年高考真题-地理(河北卷) 含答案
评论
0/150
提交评论