




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量在平面几何中的应用,本溪市高级中学 姜志勇,例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD中,,设 ,则,向量 的夹角为 BAD.,例1.如图,已知平行四边形ABCD中,E、F在对角线BD上,并且BE=FD,求证AECF是平行四边形。,证明:由已知设,即边AE、FC平行且相等,AECF是平行四边形,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。,用向量方法解决平面几何问题的“三步曲”:,例2. 求证平行四边形对角线互相平分,证明:如图,已知平行四边形ABCD的两条对角线相交于M,设,则,根据平面向量基本定理知,这两个分解式是相同的,所以,解得,所以点M是AC、BD的中点,即两条对角线互相平分.,例3.已知正方形ABCD,P为对角线AC上任意一点,PEAB于点E,PFBC于点F,连接DP、EF,求证DP EF。,证明:选择正交基底 ,在这个基底下,设,所以,因此DPEF.,例4、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。 求证:,解:设 ,则,分析:因为平行四边形对边平行且相 等,故设 其它线段对应向 量用它们表示。,向量与直线 方向向量 法向量,x,o,y,三、应用向量知识证明三线共点、三点共线,例3、已知:如图AD、BE、CF是ABC三条高 求证:AD、BE、CF交于一点,H,由此可设,利用ADBC,BECA,对应向量垂直。,三、应用向量知识证明三线共点、三点共线,例4、如图已知ABC两边AB、AC的中点分别为M、N, 在BN延长线上取点P,使NP=BN,在CM延长线上取点Q, 使MQ=CM。求证:P、A、Q三点共线,解:设,则,由此可得,即 故有 ,且它们有 公共点A,所以P、A、Q三点共线,四、应用向量知识证明等式、求值,例5、如图ABCD是正方形M是BC的中点,将正方形折起, 使点A与M重合,设折痕为EF,若正方形面积为64, 求AEM的面积,分析:如图建立坐标系,设E(e,0),M(8,4),N是AM的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古第七批高层次人才需求目录(2025年4月29日发布)模拟试卷带答案详解
- 大班保育员工作总结15篇
- 安全个人工作总结
- 数字版权签约作者合同6篇
- 2025年物联网设备安全漏洞应对策略与防护技术深度报告
- 2025年家庭教育指导服务行业供需矛盾与市场潜力分析报告
- 2025年纺织服装制造业智能化生产智能化生产设备市场前景分析报告
- 2025年电商平台售后服务质量提升策略研究报告:售后服务与品牌口碑管理研究
- 购房资金不足借款协议6篇
- 2025年康复医疗服务体系人才培养与职业发展报告
- 新人教版《海水的性质》课件
- NB-T+33008.1-2018电动汽车充电设备检验试验规范 第1部分:非车载充电机
- 【新课标】高中生物新课程标准考试题三套
- 2025小学道德与法治开学第一课(思想政治理论教育课)
- 公关经理培训课程
- 异博定治疗方案
- 申请法院司法赔偿申请书
- 锻造操作机安全检查表模版
- 400字作文稿纸可修改模板
- 防排烟系统施工安装全程验收记录
- 家庭经济困难学生认定申请表
评论
0/150
提交评论