数项级数shuxiangjishudegainianhexingzh.ppt_第1页
数项级数shuxiangjishudegainianhexingzh.ppt_第2页
数项级数shuxiangjishudegainianhexingzh.ppt_第3页
数项级数shuxiangjishudegainianhexingzh.ppt_第4页
数项级数shuxiangjishudegainianhexingzh.ppt_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东水利职业学院数理化教研室,应用数学精品课程电子教案,无穷级数,第一节 数项级数,山东水利职业学院数理化教研室,应用数学精品课程电子教案,第一节 数项级数的概念和性质,一. 数项级数的概念,中学: 无穷等比级数,就是无穷级数的一种,定义,将其各项依次累加所得的式子,称为数项无穷级数,设有数列,项,通项,山东水利职业学院数理化教研室,应用数学精品课程电子教案,问题:如何理解无穷个数相加?,变化趋势,1. 部分和:,2. 部分和数列:,3. 收敛:,称级数收敛,称为级数余项,极限不存在,称级数发散,例. 判断级数敛散性:,(1). 1+2+3+n+,级数发散,山东水利职业学院数理化教研室,应用数学精品课程电子教案,(2).,级数收敛,=1,(3).,q =1时,q =-1时,极限不存在,级数发散,级数发散,山东水利职业学院数理化教研室,应用数学精品课程电子教案,级数发散,总之:,级数收敛,级数发散,(4).,级数发散,山东水利职业学院数理化教研室,应用数学精品课程电子教案,二. 数项级数的性质,性质1,若级数 收敛于和 S, k 为常数,则,证,推论: 级数的每一项同乘一个不为零的常数后,敛散性不变,性质2. 两个收敛级数可以逐项相加或逐项相减,山东水利职业学院数理化教研室,应用数学精品课程电子教案,性质3. 改变有限项不影响级数的敛散性,证,不妨设去掉前k 项,得级数,常数,原级数部分和,时,同时敛散,因此,不影响级数的敛散性.,例:,因为 和 都收敛,级数收敛,山东水利职业学院数理化教研室,应用数学精品课程电子教案,性质4. 收敛级数各项加括号后所得新级数仍收敛且和不变,证:,设收敛级数,新级数,注意: (1). 加括号后所得新级数发散,则原级数发散.,(2). 加括号后所得新级数收敛,原级数不一定收敛.,例如: (11)+ (11)+ (11)+收敛,而11+11+11+发散.,山东水利职业学院数理化教研室,应用数学精品课程电子教案,性质5.(级数收敛必要条件),若级数 收敛,则,证:,(2). 时,级数 不一定收敛,判断级数发散 的第一步骤,山东水利职业学院数理化教研室,应用数学精品课程电子教案,但可以证明级数发散,假若级数收敛,则,但是,矛盾,例如:调和级数,山东水利职业学院数理化教研室,应用数学精品课程电子教案,(2),不存在,级数发散,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论