




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
闭区间上二次函数最值讨论,已知函数f(x)= x22x 3. (1)若x 2,0 , 求函数f(x)的最值;,问题回顾:,已知函数f(x)= x2 2x 3. (1)若x 2,0 ,求函数f(x)的最值;,(2)若x 2,4 ,求函数f(x)的最值;,已知函数f(x)= x2 2x 3. (1)若x 2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值;,(3)若x ,求 函数f(x)的最值;,已知函数f(x)= x2 2x 3 (1)若x2,0,求函数f(x)的最值; (2)若x 2,4 ,求函数f(x)的最值; (3)若x ,求函数f(x)的最值;,(4)若x - , 求函数f(x)的最值;,已知函数f(x)= x2 2x 3. (1)若x2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值; (3)若x ,求函数f(x)的最值; (4)若x ,求 函数f(x)的最值;,在闭区间m,n上的最值有以下两种情况:,一.求二次函数,最大的一个为最大值,最小的一个为最小值。,较大的一个为最大值,较小的一个为最小值。,二.关键思想方法:数形结合,回顾与小结,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上 的最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,例1、求函数f(x)=x22ax+1在区间1,2上 的最值.,例1、求函数f(x)=x22ax+1在区间1,2上的 最值.,评注:例1属于“轴变区间定”的问题,可以看作对称轴沿x轴移动的过程中,函数最值的变化,即对称轴在定区间的左、右两侧及对称轴在定区间上变化情况,要注意开口方向及端点情况。,练习、求函数f(x)=x2ax+3在区间1,1上 的最值.,练习:已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,练习:已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,练习:已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,练习:已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,练习:已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,若 xt,t+2时,求函数f(x)的最值.,例2、已知函数f(x)= x2 2x 3.,问题拓展:,例2、已知函数f(x)= x2 2x 3. 若xt,t+2时,求函数f(x)的最值.,例2、已知函数f(x)= x2 2x 3. 若xt,t+2时,求函数f(x)的最值.,例2、已知函数f(x)= x2 2x 3. 若xt,t+2时,求函数f(x)的最值.,例2、已知函数f(x)= x2 2x 3. 若xt,t+2时,求函数f(x)的最值.,评注:例1属于“轴定区间变”的问题,可以看作是动区间沿x轴移动,函数最值的变化,即动区间在定轴的左、右两侧及包含定轴的变化,要注意开口方向及端点情况。,若txt+1,求函数f(x) =x22x+3的最值,练习:,作业:,求下列函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司聚会赞助活动方案
- 公司现场宣传活动方案
- 公司营地团建活动方案
- 公司清远漂流活动方案
- 公司春茗策划方案
- 公司椅子清仓活动方案
- 公司新生产线策划方案
- 公司新春工会活动方案
- 公司组织云年会活动方案
- 公司端午感恩策划方案
- 优2023年医用X射线诊断与介入放射学 辐射安全考核试题库含答案
- 《桥小脑角占位》
- 甘肃省苹果产业发展现状、问题及对策苹果产业的现状及对策
- 培训MSDS专业知识课件
- 夜空中最亮的星二部合唱简谱
- 广东省佛山市南海区2021-2022学年六年级下学期数学学科核心素养水平抽样调研试卷
- YC/T 246-2008烟草及烟草制品烟碱的测定气相色谱法
- 钢结构施工检查记录表格
- 桥梁施工质量控制要点(PPT)
- 一二年级看图说话写话:过河 教学课件
- 售后服务管理制度与工作流程
评论
0/150
提交评论