




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019/5/22,同济版高等数学课件,第九章,*二、全微分在近似计算中的应用,应用,第三节,一元函数 y = f (x) 的微分,近似计算,估计误差,本节内容:,一、全微分的定义,全微分,2019/5/22,同济版高等数学课件,一、全微分的定义,定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y ),可表示成,其中 A , B 不依赖于 x , y , 仅与 x , y 有关,,称为函数,在点 (x, y) 的全微分, 记作,若函数在域 D 内各点都可微,则称函数,f ( x, y ) 在点( x, y) 可微,,处全增量,则称此函数在D 内可微.,2019/5/22,同济版高等数学课件,(2) 偏导数连续,下面两个定理给出了可微与偏导数的关系:,(1) 函数可微,函数 z = f (x, y) 在点 (x, y) 可微,当函数可微时 :,得,函数在该点连续,偏导数存在,函数可微,即,2019/5/22,同济版高等数学课件,定理1(必要条件),若函数 z = f (x, y) 在点(x, y) 可微 ,则该函数在该点的偏导数,同样可证,证:因函数在点(x, y) 可微, 故,必存在,且有,得到对 x 的偏增量,因此有,2019/5/22,同济版高等数学课件,反例: 函数,易知,但,因此,函数在点 (0,0) 不可微 .,注意: 定理1 的逆定理不成立 .,偏导数存在函数 不一定可微 !,即:,2019/5/22,同济版高等数学课件,定理2 (充分条件),证:,若函数,的偏导数,则函数在该点可微分.,2019/5/22,同济版高等数学课件,所以函数,在点,可微.,注意到, 故有,2019/5/22,同济版高等数学课件,推广:,类似可讨论三元及三元以上函数的可微性问题.,例如, 三元函数,习惯上把自变量的增量用微分表示,记作,故有下述叠加原理,称为偏微分.,的全微分为,于是,2019/5/22,同济版高等数学课件,例1. 计算函数,在点 (2,1) 处的全微分.,解:,例2. 计算函数,的全微分.,解:,2019/5/22,同济版高等数学课件,可知当,*二、全微分在近似计算中的应用,1. 近似计算,由全微分定义,较小时,及,有近似等式:,(可用于误差分析或近似计算),(可用于近似计算),2019/5/22,同济版高等数学课件,半径由 20cm 增大,解: 已知,即受压后圆柱体体积减少了,例3. 有一圆柱体受压后发生形变,到 20.05cm ,则,高度由100cm 减少到 99cm ,体积的近似改变量.,求此圆柱体,2019/5/22,同济版高等数学课件,例4.计算,的近似值.,解: 设,则,取,则,2019/5/22,同济版高等数学课件,分别表示 x , y , z 的绝对误差界,2. 误差估计,利用,令,z 的绝对误差界约为,z 的相对误差界约为,则,2019/5/22,同济版高等数学课件,特别注意,类似可以推广到三元及三元以上的情形.,乘除后的结果相对误差变大 很小的数不能做除数,2019/5/22,同济版高等数学课件,例5. 利用公式,求计算面积时的绝对误差与相对误差.,解:,故绝对误差约为,又,所以 S 的相对误差约为,计算三角形面积.现测得,2019/5/22,同济版高等数学课件,例6.在直流电路中,测得电压 U = 24 V ,解: 由欧姆定律可知,( ),所以 R 的相对误差约为,0.3 + 0.5 ,R 的绝对误差约为,0.8 ,0.3;,定律计算电阻为 R 时产生的相对误差和绝对误差 .,相对误差为,测得电流 I = 6A, 相对误差为 0.5 ,= 0.032 ( ),= 0.8 ,求用欧姆,2019/5/22,同济版高等数学课件,内容小结,1. 微分定义:,2. 重要关系:,定义,2019/5/22,同济版高等数学课件,3. 微分应用, 近似计算, 估计误差,绝对误差,相对误差,2019/5/22,同济版高等数学课件,思考与练习,1. P75 题5 ;P129 题 1,函数,在,可微的充分条件是( ),的某邻域内存在 ;,时是无穷小量 ;,时是无穷小量 .,2. 选择题,2019/5/22,同济版高等数学课件,答案:,也可写作:,当 x = 2 , y =1 , x = 0.01 , y = 0.03 时 z = 0.02 , d z = 0.03,3. P129 题 7,2019/5/22,同济版高等数学课件,4. 设,解:,利用轮换对称性 , 可得,注意: x , y , z 具有 轮换对称性,2019/5/22,同济版高等数学课件,答案:,作业 P74 1 (3) , (4) ; 3 ; *6 ; *9 ; *11,5. 已知,第四节,2019/5/22,同济版高等数学课件,在点 (0,0) 可微 .,备用题,在点 (0,0) 连续且偏导数存在,续,证: 1),因,故函数在点 (0, 0) 连续 ;,但偏导数在点 (0,0) 不连,证明函数,所以,2019/5/22,同济
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邢台市中医院护理教学社会服务考核
- 重庆市人民医院呼吸科临床研究协调员GCP规范入门考核
- 2025年铜川市为县以下医疗卫生机构定向招聘笔试考前自测高频考点模拟试题及答案详解(夺冠)
- 衡水市中医院影像带教资格考核
- 2025年南安市部分公办学校专项招聘编制内新任教师58人(二)模拟试卷及参考答案详解一套
- 2025江西人力诚聘派驻江西江铜华东铜箔有限公司劳务派遣人员14人考前自测高频考点模拟试题附答案详解(突破训练)
- 2025年安徽中烟工业有限责任公司招聘模拟试卷有答案详解
- 2025湖南衡阳市住房保障服务中心招聘见习人员3人考前自测高频考点模拟试题完整参考答案详解
- 重庆市人民医院神经阻滞技术专项技能考核
- 2025黑龙江黑河爱辉区中心敬老院招聘工作人员13人考前自测高频考点模拟试题有答案详解
- 围墙新建及改造工程施工组织设计(技术标)
- 房屋建筑学民用建筑构造概论
- 政策议程多源流模型分析
- 蓝点网络分账解决方案
- GB/T 22315-2008金属材料弹性模量和泊松比试验方法
- GB/T 17980.37-2000农药田间药效试验准则(一)杀线虫剂防治胞囊线虫病
- 血管活性药物(ICU)课件
- 旅游饭店服务技能大赛客房服务比赛规则和评分标准
- “手电筒”模型-高考数学解题方法
- GB∕T 2980-2018 工程机械轮胎规格、尺寸、气压与负荷
- TTAF 068-2020 移动智能终端及应用软件用户个人信息保护实施指南 第8部分:隐私政策
评论
0/150
提交评论