




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,空间中直线与直线之间的位置关系,北师大版高中数学必修2第一章立体几何初步,法门高中姚连省制作,2,一、教学目标 1、知识与技能:(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。 2、过程与方法:(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。 3、情感与价值:让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。 二、教学重点、难点 重点:1、异面直线的概念;2、公理4及等角定理。 难点:异面直线所成角的计算。 三、学法与教法 1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。2、教法:探究交流法 四、教学过程,3,问题提出,1.同一平面内的两条直线有哪几种位 置关系?,2.空间中的两条不同直线除了平行和相交这两种位置关系外,还有什么位置关系呢?,4,知识探究(一):异面直线的概念,思考1:教室内的日光灯管所在的直线与黑板的左右两侧所在的直线,既不相交,也不平行;天安门广场上,旗杆所在的直线与长安街所在的直线,它们既不相交,也不平行.你还能举出这样的例子吗?,5,思考2:如图, 长方体ABCD-ABCD中,线段AB所在直线分别与线段CD所在直线,线段BC所在直线,线段CD所在直线的位置关系如何?,思考3:我们把上图中直线AB与直线CD叫做异面直线,一般地,从字面上怎样理解异面直线?,6,思考4:为了表示异面直线a,b不共面的特点,作图时,通常用一个或两个平面衬托,如图.,7,关于异面直线的定义,你认为下列哪个说法最合适? A. 空间中既不平行又不相交的两条直线; B. 平面内的一条直线和这平面外的一条直 线; C. 分别在不同平面内的两条直线; D. 不在同一个平面内的两条直线; E. 不同在任何一个平面内的两条直线.,8,思考5:空间中的直线与直线之间有几种位置关系?它们各有什么特点?,不同在任何一个平面内,没有公共点,同一平面内,有且 只有一个公共点;,同一平面内,没有 公共点;,9,知识探究(二):三线平行公理,思考1:设直线a/b,将直线a在空间中作平行移动,在平移过程中a与b仍保持平行吗 ?,10,思考2:如图, 在长方体ABCDABCD中,BBAA,DDAA,那么BB与DD平行吗 ?,11,思考3:取一块长方形纸板ABCD,E,F分别为AB,CD的中点,将纸板沿EF折起,在空间中直线AD与BC的位置关系如何 ?,12,思考4:通过上述实验可以得到什么结论?,公理4 平行于同一直线的两条直线互相平行.,思考5:公理4叫做三线平行公理,它说明空间平行直线具有传递性,在逻辑推理中公理4有何理论作用?,13,知识探究(三):等角定理,思考1:在平面上,如果一个角的两边与另一个角的两边分别平行,那么这两个角的大小有什么关系?,14,思考2: 如图,四棱柱ABCD-ABCD 的底面是平行四边形,ADC与ADC, ADC与BAD的两边分别对应平行,这两组角的大小关系如何 ?,15,思考3:如图,在空间中AB/ AB,AC/ AC,你能证明BAC与BAC 相等吗?,16,思考4:综上分析我们可以得到什么定理?,定理 空间中如果两个角的两边分别 对应平行,那么这两个角相等或互补.,思考5:上面的定理称为等角定理,在等角定理中,你能进一步指出两个角相等的条件吗?,角的方向相同或相反,17,理论迁移,例1 如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有多少对?,A,18,例2 如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点. (1) 求证:四边形EFGH是平行四边形. (2) 若AC=BD,那么四边形EFGH是什么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽师范大学专职辅导员招聘12人模拟试卷有答案详解
- 2025江西招收劳务派遣制工作人员3人考前自测高频考点模拟试题及答案详解(必刷)
- 2025广东中山市沙溪镇人民政府所属事业单位招聘事业单位人员11人模拟试卷及答案详解(网校专用)
- 2025胡杨河市人民法院招聘书记员(1人)模拟试卷有完整答案详解
- 2025年济宁金乡县事业单位公开招聘工作人员(教育类)(39人)考前自测高频考点模拟试题及答案详解(各地真题)
- 2025年西安亮丽电力集团有限责任公司招聘(10人)模拟试卷及1套参考答案详解
- 浙江国企招聘2025温州市瓯飞新型建材有限公司面向社会公开招聘10名工作人员(合同制)笔试历年参考题库附带答案详解
- 2025黑龙江省建设科创投资有限公司面向社会招聘1人笔试历年参考题库附带答案详解
- 2025陕西恒润利农生物科技有限公司招聘(18人)笔试历年参考题库附带答案详解
- 2025重庆明德商业保理有限公司招聘1人笔试历年参考题库附带答案详解
- 体力活动金字塔
- 铜仁市大学生乡村医生专项计划招聘考试真题
- 土地综合整治投标方案(技术方案)
- JJF(皖) 174-2024 重点用能单位能源资源计量在线审查规范
- JGJ-T+141-2017通风管道技术规程
- 历年全国《宪法》知识竞赛试题库完整版及答案【历年真题】
- 基本乐理(师范教育专业)全套教学课件
- JJG 270-2008血压计和血压表
- 《解剖学基础》课件-上肢骨及其连接
- 轻质燃料油安全技术说明书样本
- 小米全屋智能方案
评论
0/150
提交评论