2019版高考数学复习导数及其应用第一节变化率与导数导数的计算夯基提能作业本文.docx_第1页
2019版高考数学复习导数及其应用第一节变化率与导数导数的计算夯基提能作业本文.docx_第2页
2019版高考数学复习导数及其应用第一节变化率与导数导数的计算夯基提能作业本文.docx_第3页
2019版高考数学复习导数及其应用第一节变化率与导数导数的计算夯基提能作业本文.docx_第4页
2019版高考数学复习导数及其应用第一节变化率与导数导数的计算夯基提能作业本文.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一节变化率与导数、导数的计算A组基础题组1.(2015北京东城一模)记函数f(x)的导数为f (x),若f(x)对应的曲线在点(x0,f(x0)处的切线方程为y=-x+1,则()A.f (x0)=2 B.f (x0)=1C.f (x0)=0 D.f (x0)=-12.曲线f(x)=在点(1, f(1)处的切线的倾斜角为,则实数a=()A.1 B.-1C.7 D.-73.已知f(x)=x(2 014+ln x),若f (x0)=2 015,则x0=()A.e2 B.1C.ln 2D.e4.已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g(x)是g(x)的导函数,则g(3)=()A.-1 B.0C.2 D.45.已知f(x)为偶函数,当x0时, f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是.6.已知aR,设函数f(x)=ax-ln x的图象在点(1, f(1)处的切线为l,则l在y轴上的截距为.7.已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围为.8.已知函数f(x)=x-,g(x)=a(2-ln x)(a0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.9.已知函数f(x)=x3-2x2+3x(xR)的图象为曲线C.(1)求过曲线C上任意一点切线斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.B组提升题组10.已知函数f(x)=ex-2ax,g(x)=-x3-ax2.若不存在x1,x2R,使得f (x1)=g(x2),则实数a的取值范围为()A.(-2,3)B.(-6,0)C.-2,3D.-6,011.已知f(x)=acos x,g(x)=x2+bx+1,若曲线y=f(x)与曲线y=g(x)在交点(0,m)处有公切线,则a+b=()A.-1 B.0 C.1 D.212.若函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是 .13.设函数f(x)=ax-,曲线y=f(x)在点(2, f(2)处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值. 答案精解精析A组基础题组1.D2.C3.B4.B5.答案y=2x解析当x0时,-x0),点(1,2)在曲线f(x)=ex-1+x(x0)上,易知f (1)=2,故曲线y=f(x)在点(1,2)处的切线方程是y-2=f (1)(x-1),即y=2x.6.答案1解析本题主要考查导数的几何意义以及直线方程与截距.由题意可知f (x)=a-,所以f (1)=a-1,因为f(1)=a,所以切点坐标为(1,a),所以切线l的方程为y-a=(a-1)(x-1),即y=(a-1)x+1.令x=0,得y=1,即直线l在y轴上的截距为1.7.答案解析函数f(x)=ex-mx+1的导函数为f (x)=ex-m,要使曲线C存在与直线y=ex垂直的切线,则需ex-m=-有解,即m=ex+有解,由ex0,得m,则实数m的取值范围为.8.解析根据题意有曲线y=f(x)在x=1处的切线斜率为f (1)=3,曲线y=g(x)在x=1处的切线斜率为g(1)=-a.又f (1)=g(1),所以a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两条切线不是同一条直线.9.解析(1)由题意得f (x)=x2-4x+3,则f (x)=(x-2)2-1-1,即过曲线C上任意一点切线斜率的取值范围是-1,+).(2)设曲线C的其中一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知,解得-1k0或k1,故由-1x2-4x+3-2a,g(x)=-3x2-2ax,-2a,解得-6a0.11.C依题意得, f (x)=-asin x,g(x)=2x+b, f (0)=g(0),-asin 0=20+b,故b=0,m=f(0)=g(0),m=a=1,因此a+b=1,选C.12.答案解析f (x)=+a(x0).函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,方程+a=2在区间(0,+)上有解,即a=2-在区间(0,+)上有解,a2.若直线2x-y=0与曲线f(x)=ln x+ax相切,设切点为(x0,2x0),则解得x0=e,a=2-.综上,实数a的取值范围是.13.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=,又f (x)=a+,即有a+=,解得a=1,b=3.故f(x)=x-.(2)证明:设P(x0,y0)为曲线上任一点,由(1)知, f (x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-=(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为.令y=x,得y=x=2x0,从而得切线与直线y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论