已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Some statistics in Econometrics and their developments,Shaoping Wang School of Economics, Huazhong University of Science and Technology, Wuhan, China,IntroductionClassic tests in Econometrics,More broadly: hypothesis could be set as linear or nonlinear. Likelihood Ratio test: Wald test: LM test:,Three Prevailing Tests in econometrics,Introduction,DW test for first autocorrelation I(1) tests : t statistics and its distribution-DF and ADF distribution Whats difference for the DF and ADF distribution ADF test and PP test for I(1) process Some issues,3.1宏观计量,非平稳(单位根I(1))过程:,3.1宏观计量,非平稳(单位根I(1))过程:,单位根检验 时间序列yt, yt = yt-1 + ut , 零假设和备择假设分别是, H0: = 1, ( yt I(1) H1: 1, ( yt I(0)),3.1宏观计量,非平稳(单位根I(1))过程:,单位根检验 时间序列yt, yt = yt-1 + ut , 零假设和备择假设分别是, H0: = 1, ( yt I(1) H1: 1, ( yt I(0)),用DF统计量进行单位根检验。 t= DF distribution,3.1宏观计量,非平稳(单位根I(1))过程:,单位根检验 时间序列yt, yt = yt-1 + ut , 零假设和备择假设分别是, H0: = 1, ( yt I(1) H1: 1, ( yt I(0)),用DF统计量进行单位根检验。 t= DF distribution,协整 协整是对非平稳经济变量长期均衡关系的统计描述.非平稳经济变量间存在的均衡关系称作协整关系. 定义: 如果 X1t,X2t,Xkt I(1), Zt= X I(0) , =(1,2,k), 那么X1t,X2t,Xkt 协整,记为,Xt CI(1,0), 是协整向量.,上图说明: X(t), Y(t) I(1), Z(t)=0.3Y(t)+0.5X(t) I(0),Introduction,Panel unit root test: Survey by Hurlin and Mignon (2004) Assume cross sectional independence Levin and Lin (1992,1993); Levin, Lin and Chu (2002); Harris and Tzavalis (1999); Im, Pesaran and Shin (1997, 2003); Maddala and Wu (1999); Choi (1999,2001) Assume cross sectional dependence Flres, Preumont and Szafarz (1995); Tayor and Sarno (1998); Breitung and Das (2004); Bai and Ng (2001, 2004); Moon and Perron (2004); Phillips and Sul (2003); Pesaran (2003); Choi (2002); Chang (2002),Introduction,Chang (2002) A NIV estimation Chang test,Performance of Chang test with moderate to high cross sectional dependency,This Paper A Two Step Test Improved the performance,Changs Model,(1) : coefficient on the lagged dependent variable : error term which follows the AR(p) process: (2) : lag operator : autoregressive coefficient : some integer that is known and fixed,We are interested in testing for all VS for some,Hypothesis,Model Assumptions,To ensure the AR(p) process in (2) is invertible Assumption 1: for all and To restrict the distribution of error term Assumption 2: Denote (1) are independent and identically distributed and its distribution is absolutely continuous with respect to Lebesgue measure (2) has mean zero and covariance matrix (3) satisfies for some and has a characteristic function that satisfies for some,NIV Estimation and Chang Test,OLS estimation: Under , the asymptotic distribution of obtained from (3) is asymmetric, and not the usual t-distribution NIV estimation: as instrument for , where is some function satisfying Assumption 3: is regularly integrable and satisfy,Under assumption 1-3, Chang draw the key result: as and are asymptotically uncorrelated regardless of the cross sectional dependence And the test statistic has a limiting standard normal distribution,NIV Estimation and Chang Test (contd),Findings about Chang (2002),The bigger the N is, the Smaller the correlation coefficient of cross-sectional units becomes. The test statistic does not fully follow the limiting standard normal distribution when the cross sectional dependence is strong. Chang test perform well in finite samples when when the cross sectional dependence is low.,Our Test: A Two Step Test,Step1: eliminate the cross sectional dependence through the method of principal components.,Step2: apply Chang test to the treated data,Model Setting,Adopting the DGP in Bai and Ng (2004) to model the cross- sectional dependency by common factor: (3) Where: Ft is the r1 common factor among individuals. Error term has zero mean with covariance matrix , for .,Test procedure: Step one,Under the null hypothesis: The differenced common component estimator of is times the eigenvectors corresponding to the largest r eigenvalue of the matrix , the estimated loading matrix is given by . .,Step one (contd),the data with weak (or no) cross-sectional dependence where can be set as 0. After eliminating the common factor, model (3) can be rewritten as: (4) Model (4) is of the same form as Changs model (1), but with a different error term.,Step two,Denote , , , , where . We have the model with no (weak)cross-sectional dependence (5),Step Two (contd),Denote , The NIV estimator for (5) is: t-ratio of : , is the variance estimator of . Test statistics: .,The Distribution,Theorem 1. Suppose that Assumption 1 - 3 hold. Under the null hypothesis of panel unit root, we obtain, as , for all and , where denote the correlation coefficient. Theorem 2. Suppose that Assumption 1 - 3 hold. Under the null hypothesis of panel unit root and as , we obtain Extend Theorem 1 and 2 to panel data models with individual intercept and/or time trend by de-meaning and/or de-trending schemes,Simulation,DGP with General Cross-sectional dependence The covariance matrix of ,DGP with General cross sectional dependence,for size evaluation, for power evaluation The number of common factor is set as 1 for eliminating the cross-sectional dependency by method of principal components.,Simulation (contd),DGP with General cross sectional dependence Size,no intercept and no linear trend,The empirical sizes of our test in all cases are fairly close to the nominal sizes (we pick up 5%). The distortions of Chang test are more pronounced when the cross sectional dependence is high (e.g., 0.8).,Simulation (contd),Our test has reasonably good power in all designs and the power increases as N and T increase. The power of BN test is a little lower than the power of our test in some cases.,no intercept and no linear trend Uniform0.85, 0.99.,General cross sectional dependence Power,Simulation (contd),The covariance matrix of ,for size evaluation, for power evaluation,Simulation DGP with one common factor,no intercept and no linear trend,The empirical sizes of two tes
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽主持人从业考试及答案解析
- 护理第四版外科题库及答案解析
- 2025车贷网借款合同示范文本
- 矿山安全国家题库及答案解析
- 2025-2030绿色建筑行业环保政策及市场投资价值预测报告
- 2025-2030绿色化工技术创新趋势与可持续投资回报周期分析报告
- 2025-2030绿氢制备成本下降曲线与基础设施投资窗口期预测
- 上海危险品从业人员考试及答案解析
- 2025-2030纳米材料在医疗诊断中的应用趋势与产业化发展报告
- 2025-2030纳米复合材料在智能窗户领域的应用场景探索报告
- 2025年人教版三年级上册道德与法治全册知识点(新教材)
- 橡胶制品企业安全生产培训试题及答案解析
- 2025广东惠州市博罗县中小企业发展事务中心招聘编外人员2人考试参考试题及答案解析
- 2025年事业单位招聘考试卫生类医学检验专业知识试卷(临床技能考核)
- 2025年及未来5年中国压裂装备行业发展运行现状及投资潜力预测报告
- (新版)2025年6月25日生效的欧盟REACH法规250项SVHC高度关注物质清单(可编辑!)
- 2025年宠物用品市场消费者画像研究报告
- 2025年江西省省直机关公开选调公务员考试参考试题及答案解析
- 招投标自查报告和问题整改指导
- 《人工智能语言与伦理》章节测试题及答案
- 高校实验室安全基础(华东理工大学)学习通网课章节测试答案
评论
0/150
提交评论