




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第36讲直接证明与间接证明考纲要求考情分析命题趋势1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点2了解间接证明的一种基本方法反证法;了解反证法的思考过程和特点.2017全国卷,92017北京卷,142016江苏卷,202016浙江卷,20直接证明与间接证明一般考查以不等式、数列、解析几何、立体几何、函数、三角函数为背景的证明问题.分值:710分1直接证明(1)综合法定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的!_推理论证_#,最后推导出所要证明的结论!_成立_#,这种证明方法叫做综合法框图表示:(其中P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论)(2)分析法定义:从要证明的!_结论_#出发,逐步寻求使它成立的!_充分条件_#,直至最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法框图表示:.2间接证明反证法:假设原命题!_不成立_#(即在原命题的条件下,结论不成立),经过正确的推理,最后得出!_矛盾_#,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法1思维辨析(在括号内打“”或“”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件()(3)用反证法证明时,推出的矛盾不能与假设矛盾()(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程()解析(1)正确(2)错误分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件,不是充要条件(3)错误用反证法证明时,推出的矛盾可以与已知、公理、定理、事实或者假设等相矛盾(4)正确2用分析法证明:欲使AB,只需CD,这里是的(B)A充分条件B必要条件C充要条件D既不充分也不必要条件解析由题意可知,应有,故是的必要条件3用反证法证明命题“三角形三个内角至少有一个不大于60”时,应假设(B)A三个内角都不大于60B三个内角都大于60C三个内角至多有一个大于60D三个内角至多有两个大于60解析“至少有一个不大于60”的反面是“都大于60”4在ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则ABC的形状为!_等边三角形_#.解析由题意2BAC,又ABC,B.又b2ac,由余弦定理得b2a2c22accos Ba2c2ac,a2c22ac0,即(ac)20,ac,AC,ABC,ABC为等边三角形5下列条件:ab0;ab0;a0,b0;a0,b0且0,即a,b不为0且同号即可,故符合的条件有,共3个一分析法分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证【例1】 已知a0,求证:a2.证明 欲证a2,只需证2a,a0,故只需证22,即a244a2222,从而只需证2,只需证42,即a22,而上述不等式显然成立,故原不等式成立二综合法综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立因此,综合法又叫做顺推证法或由因导果法,其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性【例2】 (1)设a,b,c,d均为正数,且abcd,若abcd,证明:;|ab|cd,得()2()2,所以.因为(ab)2(ab)24ab,(cd)2(cd)24cd,由题意可知abcd,abcd,所以(ab)24ab(cd)24cd,所以|ab|cd|.(2)a,b,c成等比数列,b2ac.又x,y分别为a与b,b与c的等差中项,2xab,2ybc,2.三反证法(1)适用范围:当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证(2)关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的【例3】 等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项an与前n项和Sn;(2)设bn(nN*),求证:数列bn中任意不同的三项都不可能成为等比数列解析(1)由已知得d2.故an2n1,Snn(n)(2)证明:由(1)得bnn.假设数列bn中存在三项bp,bq,br(p,q,rN*,且互不相等)成等比数列,则bbpbr,即(q)2(p)(r)(q2pr)(2qpr)0.p,q,rN*,2pr,(pr)20,pr,与pr矛盾数列bn中任意不同的三项都不可能成等比数列1欲证a2b21a2b20,只需证明(D)A2ab1a2b20Ba2b210C1a2b20D(a21)(b21)0解析a2b21a2b20(a21)(b21)0.故选D2若0a1a2,0b1b2,且a1a2b1b21,则下列代数式中值最大的是(A)Aa1b1a2b2Ba1a2b1b2Ca1b2a2b1D解析依题意有0a1,a21,0b1,b20,a1b1a2b2(a1b2a2b1)(b1b2)(a1a2)0,a1b1a2b2a1b1a2b2a1b1a2b2(a1b2a2b1) (b1b2)(a1a2)0,则a1b1a2b2的值最大故选A3设a,b,c均为正数,且abc1,证明:(1)abbcac;(2)1.证明 (1)由a2b22ab,b2c22bc,c2a22ac,得a2b2c2abbcca.由题设得(abc)21,即1a2b2c22ab2bc2caabbcca2ab2bc2ca,所以3(abbcca)1,即abbcca.(2)因为b2a,c2b,a2c,故(abc)2(abc),即abc.所以1.4已知a0,证明:关于x的方程axb有且只有一个根证明 由于a0,因此方程至少有一个根x.假设x1,x2是它的两个不同的根,即ax1b,ax2b,由,得a(x1x2)0,因为x1x2,所以x1x20,所以a0,这与已知矛盾,故假设不成立所以当a0时,方程axb有且只有一个根易错点不熟悉反证法错因分析:有些结论,直接证明不易入手时,忽略使用反证法【例1】 设x,y,z都是正实数,ax,by,cz,则a,b,c三个数()A至少有一个不大于2B都小于2C至少有一个不小于2D都大于2解析若a,b,c都小于2,则abc6,而abcxyz6,显然与矛盾,所以C项正确答案C【跟踪训练1】 设a0,b0,且a2b2.证明:a2a2与b2b2不可能同时成立证明 假设a2a2与b2b2同时成立,则有a2ab2b0,b0,所以ab1.因为a2b22ab2(当且仅当ab1时等号成立),ab22(当且仅当ab1时等号成立),所以a2ab2b2ab24(当且仅当ab1时等号成立),这与假设矛盾,故假设错误所以a2a2与b2bbc,且abc0,求证0Bac0C(ab)(ac)0D(ab)(ac)QBPQCPQD由a的取值确定解析不妨设PQ,欲证PQ,只需证P2Q2,只需证2a722a72,只需证a27aa27a12,只需证012,012成立,PQ成立4要使成立,则a,b应满足(D)AabbBab0且abCab0且a0且ab 或 ab0且ab0,且 ab1,若 0cqBp0,则三个数,(C)A都大于2B至少有一个大于2C至少有一个不小于2D至少有一个不大于2 解析因为x0,y0,z0,所以6,当且仅当xyz时等号成立,则三个数中至少有一个不小于2.故选C二、填空题7设a2,b2,则a,b的大小关系为!_ab_#.解析a2,b2两式的两边分别平方,可得a2114,b2114,显然.ab.8用反证法证明命题“若实数a,b,c,d满足abcd1,acbd1,则a,b,c,d中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是!_a,b,c,d全是负数_#.解析“至少有一个”的否定是“一个也没有”,故结论的否定是“a,b,c,d中没有一个是非负数,即a,b,c,d全是负数”9设a,b是两个实数,给出下列条件:ab1;ab2;ab2;a2 b22;ab1.其中能推出“a,b中至少有一个大于1”的条件是!_#(填序号)解析若a,b,则ab1,但a1,b1,故推不出;若ab1,则ab2,故推不出;若a2,b3,则a2b22,故推不出;若a2,b3,则ab1,故推不出;对于,即ab2,则a,b中至少有一个大于1,反证法:假设a1且b1,则ab2与ab2矛盾,因此假设不成立,故a,b中至少有一个大于1,故能推出三、解答题10若 abcd0 且 adbc, 求证:.证明 要证,只需证()2()2,即证ad2bc2,因为adbc,所以只需证,即证adbc,设adbct,则adbc(td)d(tc)c(cd)(cdt)0,故adbc成立,从而成立11如图,AB,CD均为圆O的直径,CE圆O所在的平面,BFCE,求证:(1)平面BCEF平面ACE;(2)直线DF平面ACE.证明 (1)因为CE圆O所在的平面,BC圆O所在的平面,所以CEBC.因为AB为圆O的直径,点C在圆O上,所以ACBC.因为ACCEC,AC,CE平面ACE,所以BC平面ACE.因为BC平面BCEF,所以平面BCEF平面ACE.(2)由(1)知ACBC,又因为CD为圆O的直径,所以BDBC.因为AC,BC,BD在同一平面内,所以ACBD.因为BD平面ACE,AC平面ACE,所以BD平面ACE.又BFCE,同理可证,BF平面ACE,因为BDBFB,BD,BF平面BDF,所以平面BDF平面ACE.因为DF平面BDF,所以DF平面ACE.12设an是公比为q的等比数列(1)推导an的前n项和公式;(2)设q1,证明数列an1不是等比数列解析(1)分两种情况讨论当q1时,数列an是首项为a1的常数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 济南市2024-2025学年八年级上学期语文期中模拟试卷
- 电解铝电解车间QC课件
- 电脑绣花设计知识培训班课件
- 高能量姿势课件
- 高考成语使用课件
- 电脑无法显示课件页面问题
- revit工程师考试及答案
- pets考试试题及答案
- 湖南省郴州市永兴县三校联考2023-2024学年四年级上学期期中科学试题(含答案)
- 电站典型故障课件
- 长沙市芙蓉区2024-2025学年四年级数学第二学期期末经典模拟试题含解析
- 出差国外安全协议书
- 人教版九年级英语unit-1教案电子教案
- 中学历史教师课程思政研修计划
- 模拟联合国笔试题及答案
- 2025年法宣试题及答案
- 2025年公租房入住合同范例
- 数学问题对小学生深度学习的引领
- 用友财务软件销售合同
- 《运动损伤与康复》课件
- 北师大九年级数学上册图形的相似《相似多边形》示范课教学课件
评论
0/150
提交评论