第二章离散傅里叶变换数字信号处理习题答案.doc_第1页
第二章离散傅里叶变换数字信号处理习题答案.doc_第2页
第二章离散傅里叶变换数字信号处理习题答案.doc_第3页
第二章离散傅里叶变换数字信号处理习题答案.doc_第4页
第二章离散傅里叶变换数字信号处理习题答案.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 离散傅里叶变换(DFT)1 设x(n)=R3(n)求,并作图表示,。解: = -7 1 2 7 8 9 n | k2.设求:,的周期卷积序列,以及。 解:2 用封闭形式表达以下有限长序列的DFTx(n)。解:(1)X(k)=DFTx(n) (2) (3)有:X(k)=DFTx(n) (4)4.已知以下X(k),求IDFTX(k),其中m为某一正整数,0mN/2.解:(1)(2)x(n)=IDFTX(k)= 5有限长为N=100的两序列作出x(n),y(n)示意图,并求圆周卷积f(n)=x(n)y(n)并作图。解: x(n) y(n) 10 99 n 90 99 n y(n) 10 90 99 n6有限长序列N=10的两序列用作图表示x(n),y(n)f(n)=x(n)y(n)。解: x(n) 0 9 ny(n) 9 nf(n) 5 1-1 n-3 -57已知两有限长序列用卷积法和DFT变换两种方法分别求解f(n)。解:(1) (2) (3) 8x(n)为长为N有限长序列,分别为x(n)的圆周共轭偶部及奇部,也即:证明: 9证明:若x(n)实偶对称,即x(n)=x(N-n),则X(k)也实偶对称; 若x(n)实奇对称,即x(n)=-x(N-n),则X(k)为纯虚数并奇对称。证:(1)又: (2) 10若已知:DFTx(n)=X(k)求:。解:同理:11若长为N的有限长序列x(n)是序列x(n)=(1)求Zx(n)并画出其零极点分布;(2)求频谱并作幅度曲线;(3)求DFTx(n)用封闭形式表达式,并对照。解:(1)Zx(n)图略(2)(3)12已知x(n)是长为N的有限序列,X(k)=DFTx(n),现将长度扩大r倍,得长度为rN的有限长序列y(n)求:DFTx(n)与X(k)的关系。解:13.已知x(n)是长为N的有限长序列,X(K)=DFTx(n),现将x(n)的每两点之间补进r-1个零点,得到一长为rN的有限长序列y(n)求:DFTy(n)与X(k)的关系。解:14若DFTx(n)=X(k),求证:DFTx(n)=N证:上式中,令k=m -n=k则:15已知复有限长序列f(n)是由两实有限长序列x(n),y(n)组成f(n)=x(n)+jy(n),令已知DFTf(n)=F(k),求X(k),Y(k)以及x(n),y(n)。解:(1) (2)y(n)=16已知序列x(n)=,0a1,今对其z变换X(z)在单位圆上N等分采样,采样值为X(k)=X(z),求有限长序列IDFTX(k)。解:方法一方法二17设是周期为N的周期序列,通过系统H(z)以后,求证序列为证:在单位圆上对H(z)N等分采样,x(n)通过系统H(z)以后,输出频谱为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论