已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求函数解析式,在给定条件下求函数的解析式 f(x), 是高中数学中常见的问题,也是高考的常规题型之一,形式多样,方法众多, 这节课掌握求函数解析式 f(x) 的常用的方法.,求函数解析式的常用方法有: 、配凑法 、换元法 、解方程组法 、待定系数法 、赋值法,6、代入法,例1.已知,,求,解:,方法一:,配凑法,一、换元法和配凑法,方法二:令,换元法,【小结】:已知fg(x),求f(x)的解析式,一般可用换元法,具体为:令t=g(x),再求出f(t)可得f(x)的解析式。换元后要确定新元t的取值范围。,1、,变式训练1,2、已知,【点评】:求函数解析式时不要漏掉定义域,换元后要确定新元t的取值范围。,已知f(x)满足,求f(x).,二、解方程组法,例2、,分析:如果将题目所给的 看成两个变量,那么该等式即可看作二元方程,那么必定还需再找一个 关于它们的方程,那么交换 与 形成新的方程。,解:,联立方程组,2 得:,所以:,【小结】:求抽象函数的解析式,往往通过变换变量构造一个方程,组成方程组,利用消元法求f(x)的解析式。,1、若,变式训练2,2、若,例3、已知 f (x) 是一次函数,且 f f (x) = 4x 1, 求 f (x) 的解析式。,解:设 f (x) = kx + b,则 f f (x) = f ( kx + b ) = k ( kx + b ) + b,= k 2 x + kb + b = 4x 1,三、待定系数法,【小结】:已知函数模型(如:一次函数,二次函数,指数函数等)求解析式,首先设出函数解析式,根据已知条件代入求系数。,解:,变式训练3,解:,四、赋值法,【小结】:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知数y,得出关于x的解析式。,变式:已知函数 对于一切实数 都有,成立,且,(1)、求,的值,(2)、求,五、代入法:,例5、设函数 的图象为 , 关于点 对称的图象为 , 求 对应的函数 的表达式。,即,即,故,练习,课堂小结,2、总结:求函数的解析式的方法较多,对于各种求函数解析式的方法,要注意相互之间的区别与联系,根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围的变化,求出的函数的解析式后要写上函数的定义域,这是容易遗漏和疏忽的地方。,1、求函数解析式的常用方法: 、配凑法 、换元法 、解方程组法 、待定系数法 、赋值法,请问同学们通过本节课的学习你获得哪些知识?,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职园林工程技术(园林工程施工)试题及答案
- 2025年高职曲艺表演(曲艺创作技巧)试题及答案
- 2025年高职物流工程(物流工程基础)试题及答案
- 2025年高职(中药资源)中药种植技术推广试题及答案
- 连锁药店管理制度
- 造价咨询企业内部管理制度
- 养老院老人生活设施维修人员职业发展规划制度
- 养老院老人情感慰藉制度
- 养老院服务质量投诉处理制度
- 养老院入住老人福利待遇保障制度
- 呼吸内科一科一品一特色护理
- 负压冲洗式口腔护理
- 结婚函调报告表
- CJJT164-2011 盾构隧道管片质量检测技术标准
- 倒档变速叉工序卡
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- GB/T 43824-2024村镇供水工程技术规范
- 心力衰竭药物治疗的经济评估与成本效益分析
- QA出货检验日报表
- 校服采购投标方案
- 中外建筑史课件
评论
0/150
提交评论