2018_2019学年高中数学第一章不等关系与基本不等式2.2绝对值不等式的解法学案北师大版.docx_第1页
2018_2019学年高中数学第一章不等关系与基本不等式2.2绝对值不等式的解法学案北师大版.docx_第2页
2018_2019学年高中数学第一章不等关系与基本不等式2.2绝对值不等式的解法学案北师大版.docx_第3页
2018_2019学年高中数学第一章不等关系与基本不等式2.2绝对值不等式的解法学案北师大版.docx_第4页
2018_2019学年高中数学第一章不等关系与基本不等式2.2绝对值不等式的解法学案北师大版.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2绝对值不等式的解法学习目标1.会利用绝对值的几何意义求解以下类型的不等式:|axb|c,|axb|c,|xa|xb|c,|xa|xb|c.2.理解并掌握绝对值不等式的几种解法,并能根据不等式的结构特征选择适当方法求解知识点一|axb|c(c0)和|axb|c(c0)型不等式的解法思考1|x|2说明实数x有什么特征?答案因为x在数轴上对应的点x到原点的距离大于等于2,所以x2或x2.思考2若|2x3|5,求x的取值范围答案x|1x4梳理(1)含绝对值不等式|x|a与|x|a的解法|x|a|x|a(2)|axb|c(c0)和|axb|c(c0)型不等式的解法|axb|ccaxbc,|axb|caxbc或axbc.知识点二|xa|xb|c(c0)和|xa|xb|c(c0)型不等式的解法思考如何去掉|xa|xb|的绝对值符号?答案采用零点分段法即令|xa|xb|0,得x1a,x2b,(不妨设ab)|xa|xb|梳理|xa|xb|c和|xa|xb|c型不等式的解法(1)利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键(2)以绝对值的“零点”为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键(3)通过构造函数,利用函数的图像求解,体现函数与方程的思想,正确求出函数的零点并画出函数图像(有时需要考查函数的增减性)是解题关键特别提醒:解含绝对值不等式的关键是去掉绝对值符号,去绝对值符号的关键是“零点分段”法类型一|axb|c(c0)与|axb|c(c0)型的不等式的解法例1解下列不等式:(1)|5x2|8;(2)2|x2|4.解(1)|5x2|85x28或5x28x2或x,原不等式的解集为.(2)原不等式等价于由得x22或x22,x0或x4,由得4x24,2x6.原不等式的解集为x|2x0或4x6反思与感悟|axb|c和|axb|c型不等式的解法(1)当c0时,|axb|caxbc或axbc,|axb|ccaxbc;(2)当c0时,|axb|c的解集为R,|axb|c的解集为;(3)当c0时,|axb|c的解集为R,|axb|c的解集为.跟踪训练1解下列不等式:(1)3|x2|4;(2)|x1|4|2.解(1)方法一原不等式等价于由得x23或x23,x1或x5,由得4x24,2x6.原不等式的解集为x|2x1或5x6方法二3|x2|43x24或4x235x6或2x1.原不等式的解集为x|2x1或5x6(2)|x1|4|22|x1|422|x1|65x1或3x7.不等式|x1|4|2的解集为x|5x1或3x7类型二|xa|xb|c(c0)和|xa|xb|c(c0)型不等式的解法例2解关于x的不等式:|3x2|x1|3.解方法一分类(零点分段)讨论法|3x2|0,|x1|0的根,1把实数轴分为三个区间,在这三个区间上根据绝对值的定义,代数式|3x2|x1|有不同的解析表达式,因而原不等式的解集为以下三个不等式组解集的并集因为当x时,|3x2|x1|23x1x34x,所以当x时,|3x2|x1|334x3x0.因此,不等式组的解集为x|x0因为当x1时,|3x2|x1|3x21x2x1,所以当x1时,|3x2|x1|3x2.因此,不等式组的解集为.因为当x1时,|3x2|x1|3x2x14x3,所以当x1时,|3x2|x1|34x33x.因此,不等式组的解集为.于是原不等式的解集为以上三个不等式组解集的并集,即x|x0.方法二构造函数f(x)|3x2|x1|3,则原不等式的解集为x|f(x)0f(x)作出函数f(x)的图像,如图它是分段线性函数,函数的零点是0和.由图像可知,当x(,0)时,有f(x)0.所以原不等式的解集是(,0).反思与感悟|xa|xb|c(c0),|xa|xb|c(c0)型不等式的三种解法:分区间(零点分段)讨论法、图像法和几何法分区间讨论的方法具有普遍性,但较麻烦;几何法和图像法直观,但只适用于数据较简单的情况跟踪训练2解不等式|x7|x2|3.解方法一|x7|x2|可以看成数轴上的动点(坐标为x)到对应点7的距离与到对应点2的距离的差,先找到这个差等于3的点,即x1.由图易知不等式|x7|x2|3的解为x1,即x(,1方法二令x70,x20,得x7,x2.当x7时,不等式变为x7x23,93成立,x7.当7x2时,不等式变为x7x23,即2x2,x1,7x1.当x2时,不等式变为x7x23,即93不成立,x.原不等式的解集为(,1方法三将原不等式转化为|x7|x2|30,构造函数y|x7|x2|3,即y作出函数的图像,由图像可知,当x1时,y0,即|x7|x2|30,所以,原不等式的解集为(,1类型三含绝对值不等式的恒成立问题例3已知函数f(x)|2x1|2xa|.(1)当a3时,求不等式f(x)6的解集;(2)若关于x的不等式f(x)a恒成立,求实数a的取值范围解(1)当a3时,f(x)|2x1|2x3|,f(x)6等价于|2x1|2x3|60,令g(x)|2x1|2x3|6,令|2x1|0,|2x3|0,得x1,x2.g(x)作出yg(x)的图像,如图,f(x)6的解集为1,2(2)f(x)|2x1|2xa|(2x1)(2xa)|a1|,f(x)min|a1|.要使f(x)a恒成立,只需|a1|a成立即可由|a1|a,得a1a或a1a,a,a的取值范围是.引申探究若f(x)|2x1|2xa|且f(x)a恒成立,求a的取值范围解f(x)|2x1|2xa|(2x1)(2xa)|a1|,f(x)max|a1|.f(x)a恒成立,|a1|a,当a0时,aa1,当a0时,|1|0,无解,当a0,且a2xa2,由|x24|1,得x或x.即0a2,或无解二、填空题6不等式1成立的充要条件是_答案|a|b|解析10(|a|b|)|ab|(|a|b|)0(|a|b|)而|ab|a|b|,|ab|(|a|b|)0.|a|b|0,即|a|b|.7若关于x的不等式|ax2|3的解集为,则a_.答案3解析|ax2|3,1ax5.当a0时,x,与已知条件不符;当a0时,xR,与已知条件不符;当a0时,x,又不等式的解集为,故a3.8已知函数f(x)|xa|a,g(x)4x2,若存在x0R使g(x0)f(x0),则a的取值范围是_答案解析若存在x0R使g(x0)f(x0),则x2|xa|a40有解当xa时,x2x40,显然有解;当xa时,x2x2a40,由14(2a4)0,解得a.9已知函数f(x)|2x1|x3,若f(x)5,则x的取值范围是_答案1,1解析由题意可知,|2x1|x35,即|2x1|2x,所以或解得x1或1x,故x的取值范围是x10已知集合Ax|x4|x1|5,Bx|ax6且AB(2,b),则ab_.答案7解析|x4|x1|表示数轴上一点到1,4两点的距离之和,根据1,4之间的距离为3,可得到与1,4距离和为5的点是0,5,所以|x4|x1|5的解集是x|0x5,所以a2,b5.11已知函数f(x)|x1|2xa|的最小值为3,则实数a_.答案4或8解析当a2时,f(x)当a2时,f(x)由可得f(x)minf()|1|3,解得a4或8.三、解答题12已知函数f(x)|2xa|2x3|,g(x)|x1|2.(1)解不等式|g(x)|5;(2)若对任意x1R,都存在x2R,使得f(x1)g(x2)成立,求实数a的取值范围解(1)由|x1|2|5,得5|x1|25,即7|x1|3,得不等式的解集为x|2x4(2)因为对任意x1R,都存在x2R,使得f(x1)g(x2)成立,所以y|yf(x)y|yg(x)又f(x)|2xa|2x3|(2xa)(2x3)|a3|,g(x)|x1|22,所以|a3|2,解得a1或a5.故实数a的取值范围为1,)(,513已知ab1,对任意的a,b(0,),|2x1|x1|恒成立,求x的取值范围.解因为a0,b0且ab1,所以(ab)59,当且仅当a,b时,等号成立,故的最小值为9,因为对任意的a,b(0,),使|2x1|x1|恒成立,所以|2x1|x1|9,当x1时,2x9,所以7x1;当1x时,3x9,所以1x;当x时,x29,所以x11.综上所述,x的取值范围是7,11四、探究与拓展14(2018全国)设函数f(x)5|xa|x2|.(1)当a1时,求不等式f(x)0的解集;(2)若f(x)1,求a的取值范围解(1)当a1时,f(x)5|x1|x2|可得f(x)0的解集为x|2x3(2)f(x)1等价于|xa|x2|4.而|xa|x2|a2|,且当(xa)(x2)0时等号成立故f(x)1等价于|a2|4.由|a2|4可得a6或a2.所以a的取值范围是(,62,)15设函数f(x)|x1|x2|.(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论