




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的性质 -对称性、周期性,(1)若 关于直线 对称,一、函数的对称性,若函数 上任意一点关于某直线(或某点)的对称点仍在 上,就称 关于某直线(或某点)对称,这种对称性称为自对称。,(2)若 关于点 对称,两个恒等式的形式均不唯一,要记住本质构造.,定理:若函数 满足 ,那么函数以 为对称轴。,cor.若函数 满足 ,那么函数以 为对称轴。,即:,定理:若函数 满足 ,那么函数关于点 对称。,cor.若函数 满足 ,那么函数关于点 对称 。,即:,2)若 ,则函数 关于_对称;,注:1.当 时,函数关于直线 对称,2.当 时,函数关于点 对称,偶函数-特殊的轴对称函数,奇函数-特殊的点对称函数,一般地,1)若 ,则函数 关于 对称.,f(-x)=-f(x),f(-x)=f(x),f(x)=f-1(x),f(x)=f(2m-x),f(x)=2n-f(2m-x),Ex:若函数,12,例1:已知 的图象,画出 和 的图象,并指出两者的关系。,若函数 上任意一点关于某直线(或某点)的对称点在 上,就称 和 关于某直线(或某点)对称,这种对称性称为互对称。,一般地, 函数 和 关于_对称.,记忆:令x+a=-x+b,可求得对称轴.,y=-f(-x),y=-f(x),y=f(-x),y=f-1(x),y=-f-1(-x),y=f(2m-x),y=2n-f(x),y=2n-f(2m-x),例3:设 的图象与 的图象关 于直线 对称,求 的解析式。,例2:将函数 右移2个单位得到图像C1,有C1和C2的图像关于点 对称,求C2的函数解析式。,利用对称性求解析式,(一)、互对称问题常用轨迹代入法求解析式,例4:设 图象关于直线 对称,在 上, 求当 时 的解析式。,例5:设 是定义在R上的偶函数,它的图 象关于直线 对称,已知 时,函数 求当 时 的解析式,(二)、自对称问题常联系恒等式进行x的变换,关于直线 对称,关于直线 对称,关于 对称,关于点 对称,常见函数的对称性,一个函数本身的对称性称为自对称,分成 关于某直线对称或某点对称.,原点,二、函数的周期性,理解(1).是否所有周期函数都有最小正周期?,1.定义:对于函数 ,若存在非零常数T,使得 恒成立,则称 为周期函数,T是函数的一个周期。若所有周期中存在一个最小正数,则称它是函数的最小正周期。,(2).若T是 的一个周期,则kT(k是非零整数)均是 的周期吗? (3)周期函数的定义域D可以为闭区间吗?,T= (a-b),思考:若 ,函数 具有什么性质?,注:除了定义式是充要条件外,其余均为充分非必要条件,2、常见的判断周期的恒等式(可用递推法证明),3.函数的对称性与周期性的几个常见性质。 性质1.若函数 以 为对称轴,那么此函数是周期函数,周期T=,X=a,X=b,性质2.若函数 以 为对称点,那么此函数是周期函数,周期T=,假定,(a,0),(b,0),性质3.若函数 以 为对称点,以 为对称轴,那么此函数是周期函数,周期 T=,假定,X=b,(a,0),X,Y,O,练习1:定义在R上的函数 满足 且方程 有1001个根,则这1001个根的和?,4:如果 那么,3:如果 那么,2:函数 图象关于点 对称,则,5:(1)定义在R上偶函数 满足 则方程 在区间 上至少有( )个根。 (2)将上题中的“偶函数”改成“奇函数”,其余条件不变,则在区间 至少有( )个根。,重要结论:若 奇,且周期为T,则必有,注:可用模拟图,直观明了,思考:若 周期为 ,又 关于 对称,能否推出 是偶函数?若能, 能否严格证明?,练习:1.若 为定义在R上的奇函数,且关于直线 对称,问: 是否为周期函数?若是,求出它的一个周期。,2. 若 为定义在R上偶函数且满足 问: 是否关于直线 对称?若是,请给出证明。,3:设奇函数 ,且 当 则,5:设 是定义在R上的偶函数,它的图象关于直线 对称,已知 时,函数 求当 时 的解析式。,6:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年七年级道德与法治上册 第二单元 友谊的天空 第四课 友谊与成长同行 第1框 和朋友在一起说课稿 新人教版
- 2024-2025学年高中生物 第一章 生物科学和我们 1.1 身边的生物科学说课稿 苏教版必修3
- 考点解析人教版八年级上册物理声现象《声音的特性声的利用》同步训练试卷(含答案详解版)
- 考点解析人教版八年级上册物理《机械运动》章节训练试题(含解析)
- 解析卷人教版八年级上册物理声现象《声音的特性声的利用》重点解析试卷(附答案详解)
- 2025年新能源汽车换电市场细分领域分析与发展策略报告
- 2025-2032年中国新能源汽车充电基础设施投资回报分析报告
- 难点详解人教版八年级上册物理物态变化《温度》单元测评试卷
- 活动一 汽车展示会说课稿-2023-2024学年小学综合实践活动二年级下册沪科黔科版
- 一六 威尼斯商人(选场) 莎士比亚说课稿-2025-2026学年中职基础课-基础模块 下册-语文版-(语文)-50
- 沟槽开挖支护施工方案
- 化工岗位操作纪律培训
- 新型建材基地项目可行性研究报告(范文模板)
- 中式烹调技术知到课后答案智慧树章节测试答案2025年春潍坊技术中等专业学校
- 北斗应用助力江西智慧农业
- 传统文化知识竞赛活动方案
- 江苏省常州市2024-2025学年九年级上学期期中历史试卷(含答案)
- 软件开发中的自动化测试
- 【MOOC】颈肩腰腿痛中医防治-暨南大学 中国大学慕课MOOC答案
- 电力安全工作规程输电部分
- QCC品管圈之手术器械预处理合格率成果汇报
评论
0/150
提交评论