已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 两角和与差的三角函数 21 两角差的余弦函数 22 两角和与差的正弦、余弦函数,内容要求 1.会用向量的数量积推导出两角差的余弦公式(重点).2.能利用两角差的余弦公式导出两角差的正弦公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦公式,了解它们的内在联系(重点).4.能运用上述公式进行简单恒等变换(难点),知识点1 两角和与差的余弦公式 C:cos() . (3.3) C:cos() . (3.4),cos cos sin sin ,cos cos sin sin ,答案 B 2cos 75_.,知识点2 两角和与差的正弦公式 S:sin() . (3.5) S:sin() . (3.6),sin cos cos sin ,sin cos cos sin ,答案 A,题型一 给角求值 【例1】 求值:(1)sin 15cos 15; (2)sin 119sin 181sin 91sin 29.,规律方法 解此类题的关键是将非特殊角向特殊角转化,充分利用拆角、凑角的技巧转化为和、差角的正弦、余弦公式的形式,同时注意活用、逆用公式,“大角”利用诱导公式化为“小角”,【训练1】 求下列式子的值: (1)cos(15); (2)sin 795; (3)cos 43cos 77sin 43cos 167.,规律方法 在解决此类题目时,一定要注意已知角与所求角之间的关系,恰当地运用拆角、拼角技巧,同时分析角之间的关系,利用角的代换化异角为同角具体做法是: (1)当条件中有两角时,一般把“所求角”表示为已知两角的和或差 (2)当已知角有一个时,可利用诱导公式把所求角转化为已知角,答案 B,答案 B,课堂小结 1两角和与差的三角函数公式可以看成是诱导公式的推广,诱导公式可以看成两角和与差的三角函数公式的特例,例如:sin()sin cos cos sin sin .,2使用和差公式时不仅要会正用,还要能够逆用公式,如化简sincos()cos sin()时,不要将cos()和sin()展开,而应采用整体思想,作如下变形: sin cos()cos sin() sin()sin()sin . 3运用和差公式求值、化简、证明时要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2004年1月国开电大专科《办公室管理》期末纸质考试试题及答案
- 充电站物联网安全解决方案创新创业项目商业计划书
- 纪检监察业务知识考试题库及答案
- 2025年白山辅警协警招聘考试备考题库及答案详解(有一套)
- 2025年肇庆辅警招聘考试题库附答案详解(基础题)
- 2025年漯河辅警协警招聘考试备考题库附答案详解(达标题)
- 2025年深圳辅警招聘考试真题附答案详解(巩固)
- 2025年秦皇岛辅警招聘考试真题附答案详解(黄金题型)
- 2025年辽宁辅警招聘考试题库含答案详解(轻巧夺冠)
- 2025年遂宁辅警协警招聘考试备考题库及参考答案详解一套
- 2025海康威视视频安全门禁系统用户手册
- 乡镇卫生院基本药物实施情况汇报
- 发动机装配工艺培训课件
- 5.1延续文化血脉 教案 -2025-2026学年统编版道德与法治九年级上册
- 二人合租厂房合同协议书
- 2025年福州国有资本投资运营集团有限公司社会公开招聘12人笔试参考题库附带答案详解(10套)
- 左房肺静脉CTA扫描技术
- 成瘾机制干预策略-洞察及研究
- 学生心理健康课件
- 土建工程施工安全注意事项
- 人性的弱点完整版本
评论
0/150
提交评论