2018_2019高中数学第2章圆锥曲线与方程章末复习课件苏教版.pptx_第1页
2018_2019高中数学第2章圆锥曲线与方程章末复习课件苏教版.pptx_第2页
2018_2019高中数学第2章圆锥曲线与方程章末复习课件苏教版.pptx_第3页
2018_2019高中数学第2章圆锥曲线与方程章末复习课件苏教版.pptx_第4页
2018_2019高中数学第2章圆锥曲线与方程章末复习课件苏教版.pptx_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2章 圆锥曲线与方程,章末复习,学习目标,1.掌握椭圆、双曲线、抛物线的定义及其应用,会用定义求标准方程. 2.掌握椭圆、双曲线、抛物线的标准方程及其求法. 3.掌握椭圆、双曲线、抛物线的几何性质,会利用几何性质解决相关问题. 4.掌握简单的直线与圆锥曲线位置关系问题的解决方法.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.椭圆、双曲线、抛物线的定义、标准方程、几何性质,(a0,b0),2.求圆锥曲线方程的一般步骤 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. (1)定形指的是二次曲线的焦点位置与对称轴的位置. (2)定式根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2ny21(m0,n0且mn). (3)定量由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大小.,3.离心率 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2b2c2(a2b2c2)以及e ,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法. (2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法. (3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.,4.焦点三角形 (1)椭圆的焦点三角形,5.直线与圆锥曲线的位置关系 直线与圆锥曲线的位置关系,主要是直线与椭圆的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求定值、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,利用“设而不求法”以及“点差法”等.,2.抛物线y24x的焦点到准线的距离是4.( ),思考辨析 判断正误,题型探究,类型一 圆锥曲线的定义及应用,答案,解析,解析 由椭圆C1与双曲线C2的标准方程可知,两曲线的焦点相同. 不妨设P点在双曲线C2的右支上.,反思与感悟 涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.,答案,解析,直角三角形,解析 设P为双曲线右支上的一点.,F1PF2是直角三角形.,类型二 圆锥曲线的性质及其应用,答案,解析,解析 抛物线y24x的准线方程为x1. 又FAB为直角三角形,则只有AFB90, 如图,则A(1,2)在双曲线上,,解析,答案,反思与感悟 有关圆锥曲线的焦点、离心率、渐近线等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解.,解析,答案,(cx,y)(cx,y)x2c2y2c2, ,类型三 直线与圆锥曲线的位置关系,解答,所以b2a2c2211,,解答,解 已知椭圆的右焦点为F2(1,0),直线斜率显然存在, 设直线的方程为yk(x1), 两交点坐标分别为A(x1,y1),B(x2,y2).,化简得(12k2)x24k2x2k220,8k280.,因为MAMB,所以点M在AB的中垂线上,,当k0时,AB的中垂线方程为x0,满足题意.,反思与感悟 解决圆锥曲线中的参数范围问题与求最值问题类似,一般有两种方法: (1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等关系式,通过解不等式求参数范围.,解答,跟踪训练3 如图,焦距为2的椭圆E的两个顶点分别为A,B,且 与n( ,1)共线. (1)求椭圆E的标准方程;,解 因为2c2,所以c1.,所以2b2b21,所以b21,a22.,解答,(2)若直线ykxm与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.,消去y,得(2k21)x24kmx2m220,,16k28m280,即m22k21. (*) 因为原点O总在以PQ为直径的圆的内部,,解答,则当l与椭圆只有一个公共点时,OBC的面积最大.,反思与感悟 圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.,解答,达标检测,答案,1,2,3,4,5,解析,解析 因为ABF2的周长为4a,所以a2,得k2,,解析 y28x的焦点为(2,0),,c2m2n24,n212.,1,2,3,4,5,答案,解析,3.以抛物线y24x的焦点为顶点,顶点为中心,离心率为2的双曲线的标 准方程为_.,1,2,3,4,5,答案,解析 易得抛物线的焦点坐标为(1,0), 所以双曲线的一个顶点坐标为(1,0).,解析,1,2,3,4,5,解析 设l是抛物线的准线,F为抛物线的焦点,A,B,P在l上的投影分别为A1,B1,P1. 则由抛物线的定义可知,AA1BB1AFBF5,,答案,解析,4.若抛物线y22x上的两点A,B到焦点的距离的和是5,则线段AB的中点P到y轴的距离是_.,2,1,2,3,4,5,答案,解析,3x4y130,解析 设直线与椭圆交于A(x1,y1),B(x2,y2)两点,,又P是A,B的中点,x1x26,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论