已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.1 单调性,第3章 3.3 导数在研究函数中的应用,学习目标,1.结合实例,直观探索并掌握函数的单调性与导数的关系. 2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式. 3.会用导数法求函数的单调区间(其中多项式函数一般不超过三次).,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 函数的单调性与导函数正负的关系,思考1 观察下列各图,完成表格内容.,正,正,正,递增,递增,负,递减,负,递减,负,递减,负,负,思考2 依据上述分析,可得出什么结论? 答案 一般地,设函数yf(x),在区间(a,b)上, 如果f(x)0,则f(x)在该区间上单调递增; 如果f(x)0,则f(x)在该区间上单调递减.,梳理 (1),锐,上升,钝,递减,递增,下降,(2)在区间(a,b)内函数的单调性与导数有如下关系:,减,增,1.如果函数yf(x)在区间(a,b)上都有f(x)0,那么f(x)在区间(a,b)内单调递增.( ) 2.如果函数yf(x)在区间(a,b)上单调递增,那么它在区间(a,b)上都有f(x)0.( ),思考辨析 判断正误,题型探究,类型一 求函数的单调区间,命题角度1 求不含参数的函数的单调区间 例1 求f(x)3x22ln x的单调区间. 解 f(x)3x22ln x的定义域为(0,).,解答,反思与感悟 求函数yf(x)的单调区间的步骤 (1)确定函数yf(x)的定义域; (2)求导数yf(x); (3)解不等式 f(x)0,函数在定义域内的解集上为增函数; (4)解不等式 f(x)0,函数在定义域内的解集上为减函数.,解答,解 函数f(x)的定义域为(,2)(2,).,因为x(,2)(2,),所以ex0,(x2)20. 由f(x)0,得x3,所以函数f(x)的单调递增区间为(3,); 由f(x)0,得x3. 又函数f(x)的定义域为(,2)(2,), 所以函数f(x)的单调递减区间为(,2)和(2,3).,解答,命题角度2 求含参数的函数的单调区间 例2 讨论函数f(x)x2aln x(a0)的单调性.,设g(x)2x2a,由g(x)0,得2x2a. 当a0时,f(x)2x0,函数f(x)在区间(0,)上为增函数;,综上,当a0时,函数f(x)的单调增区间是(0,);,解答,引申探究 若将本例改为f(x)ax2ln x(aR)呢?,当a0时,且x(0,),f(x)0, 函数f(x)在(0,)上为减函数;,综上所述,当a0时,函数f(x)在(0,)上为减函数;,反思与感悟 (1)在判断含有参数的函数的单调性时,不仅要考虑到参数的取值范围,而且要结合函数的定义域来确定f(x)的符号,否则会产生错误. (2)分类讨论是把整个问题划分为若干个局部问题,在每一个局部问题中,原先的不确定因素就变成了确定性因素,当这些局部问题都解决了,整个问题就解决了.,解答,跟踪训练2 已知函数f(x)4x33tx26t2xt1,其中xR,tR.当t0时,求f(x)的单调区间.,解 f(x)12x26tx6t26(xt)(2xt),,同理当x(t,)时,f(x)也为增函数.,类型二 证明函数的单调性问题,证明,则cos x0,xcos xsin x0,f(x)0,,反思与感悟 关于利用导数证明函数单调性的问题 (1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行. (2)f(x)(或)0,则f(x)为单调递增(或递减)函数;但要特别注意,f(x)为单调递增(或递减)函数,则f(x)(或)0.,证明,又0xe,ln xln e1.,类型三 已知函数的单调性求参数范围,解答,要使f(x)在2,)上单调递增,则f(x)0在x2,)时恒成立,,x20,2x3a0, a2x3在x2,)时恒成立. a(2x3)min. 当x2,)时,y2x3是单调递增的, (2x3)min16,a16.,a的取值范围是(,16.,反思与感悟 已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f(x)0(f(x)0)在区间I上恒成立,再用有关方法可求出参数的取值范围.,解答,解 方法一 f(x)x2ax(a1), 因为函数f(x)在区间1,2上为减函数, 所以f(x)0,即x2ax(a1)0,解得ax1. 因为在1,2上,ax1恒成立, 所以a(x1)max1. 所以a的取值范围是1,). 方法二 f(x)(x1)x(a1), 由于函数f(x)在区间1,2上为减函数, 所以f(x)0,当a2时,解得1xa1,,即减区间为1,a1,则1,21,a1,得a1. 当a2时,解得减区间为a1,1, 则函数f(x)不可能在1,2上为减函数,故a1. 所以实数a的取值范围是1,).,达标检测,1.函数f(x)2x33x21的单调递增区间是_,单调递减区间是_.,答案,1,2,3,4,5,解析,(,0)和(1,),解析 f(x)6x26x, 令f(x)0,得x1, 令f(x)0,得0x1.,(0,1),1,2,3,4,5,答案,解析,2.函数f(x)(x1)ex的单调递增区间是_. 解析 f(x)(x1)ex(x1)(ex)xex, 令f(x)0,解得x0.,(0,),3.函数f(x)ln xax(a0)的单调递增区间为_.,1,2,3,4,5,答案,解析,解析 f(x)的定义域为x|x0,,4.若函数yx3ax24在(0,2)上单调递减,则实数a的取值范围为_. 解析 y3x22axx(3x2a), 由题意知x(0,2),y0,,1,2,3,4,5,答案,解析,3,),1,2,3,4,5,5.求函数f(x)(xk)ex的单调区间. 解 f(x)ex(xk)ex(xk1)ex, 当xk1时,f(x)0, 所以f(x)的单调递减区间是(,k1),单调递增区间为(k1,).,解答,1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黔东南苗族侗族自治州辅警招聘考试题库附答案详解(达标题)
- 2025年贺州辅警招聘考试题库附答案详解(培优a卷)
- 2025年黔西南州辅警协警招聘考试真题附答案详解(综合卷)
- 2025年营口辅警协警招聘考试备考题库及答案详解(全优)
- 2025年邯郸辅警招聘考试真题及答案详解(夺冠)
- 2025年滁州辅警协警招聘考试真题含答案详解(典型题)
- 2025年阿坝州辅警招聘考试真题及一套参考答案详解
- 2025年绍兴辅警招聘考试题库附答案详解(培优)
- 2025年衢州辅警协警招聘考试真题及完整答案详解一套
- 2025年莱芜辅警招聘考试题库含答案详解(新)
- 2025年甘肃省金昌市市直事业单位选调22人笔试考试备考试题及答案解析
- 加油站安全生产信息管理制度
- 国家二级MSOffice高级应用机试(操作题)模拟试卷3(共156题)
- 华为ICT大赛中国区(实践赛)-昇腾AI赛道往年考试真题(附答案)
- 工商银行讨论面试题目及答案
- 2025中铁信息工程集团沈阳分公司招聘笔试历年常考点试题专练附带答案详解2套试卷
- 深圳市建设报建流程及资料准备指引
- 房颤合并冠心病的抗凝指南2025
- 2025年农商银行面试题目及答案
- 8.2 敬畏生命(课件) 2025-2026学年道德与法治 七年级上册
- 创业指导师二级理论考试重点题库(含答案)
评论
0/150
提交评论