




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正、余弦定理的应用,江西省高安中学 卢珊,回顾:,1.正弦定理,3.在初中判断三角形的形状的依据的什么?,即三角形分类的标准,按边或按角判断.,2.余弦定理,在ABC中,已知2b=a+c,证明: 2sinB=sinA+sinC,问题1:,引:你能找到三角形各边与对角正弦的关系吗?,导:如何利用正弦定理证明以上关系?,证明:由 得,即 2sinB=sinA+sinC,a=2RsinA,b=2RsinB,c=2RsinC,,将此式 代入 2b=a+c 得,22RsinB=2RsinA+2RsinC,证明:由 得,a=2RsinA,b=2RsinB,c=2RsinC,,解:由 得,a=2RsinA,b=2RsinB,,将此式 代入bcosA=acosB 得,(2RsinB)cosA=(2RsinA)cosB,sinAcosB - cosAsinB=0 ,Sin(A B) =0,由-A- B 知 A B=0 ,即 A=B,所以, 此三角形为等腰三角形,动手实践:,1.在ABC中,已知acosA=bcosB,判断三角形的形状。,又 02A、2B,所以, 此三角形为等腰三角形或直角三角形。,2.在ABC中,已知, ,判断三角形的形状。,1.解:由 得,a=2RsinA,b=2RsinB,,将此式 代入acosA=bcosB 得,(2RsinA)cosA=(2RsinB)cosB,sinAcosA = cosBsinB , sin2A = sin2B ,2A=2B或2A= -2B, A=B或A+B=,2.解(略)等腰三角形或直角三角形,在三角形中,已知(a+b)(a- b)=c(b+c),求角A.,问题2:,引导:条件整理变形后有什么特点?,解:条件整理变形得,cosA=,动手实践:,在ABC中,已知,求角C.,2.求 的值.,总结提高:,2. 应用正弦定理、余弦定理不仅可以解斜三角形,还可以将条件统一为边的关系或角的关系.,1.正弦定理的变式,a=2RsinA,b=2RsinB,c=2RsinC,课后巩固作业:,1.在ABC中,已知sin(A+B)sinB=sin C,判断三角形的形状。,2,2.在ABC中,证明下列各式:,3.在AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内训师课件评选
- 化学污水处理安全培训课件
- 化学实验安全知识培训课件
- 内科心电监护课件
- 活性物质抑菌机制-洞察及研究
- 识字4田家四季歌 +公开课一等奖创新教学设计
- 内河基本安全知识培训课件
- 红细胞特殊结构与功能特性
- 勾股定理课件
- 内容创作与传播方式
- 建设工程监理安全资料(完整版)
- 城区绿地养护服务费项目成本预算绩效分析报告
- 职称英语A级词汇大全
- 高考英语688高频词汇excel版
- 圆度、圆柱度测量仪校准规范
- 第五章牛顿运动定律之板块模型问题专题课件高一上学期物理
- 表面活性剂的基本作用
- 员工网络安全责任书
- 工程建设项目审批流程图(政府投资工程建设项目(市政类线性项目))
- 士林变频器说明书SL
- 博雅汉语准中级加速篇1
评论
0/150
提交评论