江苏省高考数学专题二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练.docx_第1页
江苏省高考数学专题二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练.docx_第2页
江苏省高考数学专题二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练.docx_第3页
江苏省高考数学专题二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练.docx_第4页
江苏省高考数学专题二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计数原理与二项式定理A组大题保分练1设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集(1)若Ma1,a2,a3,a4,直接写出所有不同的有序集合对(A,B)的个数;(2)若Ma1,a2,a3,an,求所有不同的有序集合对(A,B)的个数解:(1)110.(2)集合M有2n个子集,不同的有序集合对(A,B)有2n(2n1)个当AB,并设B中含有k(1kn,kN*)个元素,则满足AB的有序集合对(A,B)有(2k1)2k3n2n个同理,满足BA的有序集合对(A,B)有3n2n个故满足条件的有序集合对(A,B)的个数为2n(2n1)2(3n2n)4n2n23n.2记1,2,n满足下列性质T的排列a1,a2,an的个数为f(n)(n2,nN*)性质T:排列a1,a2,an中有且只有一个aiai1(i1,2,n1)(1)求f(3);(2)求f(n)解:(1)当n3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),其中满足仅存在一个i1,2,3,使得aiai1的排列有(1,3,2),(2,1,3),(2,3,1),(3,1,2),所以f(3)4.(2)在1,2,n的所有排列(a1,a2,an)中,若ain(1in1),从n1个数1,2,3,n1中选i1个数按从小到大的顺序排列为a1,a2,ai1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C.若ann,则满足题意的排列个数为f(n1)综上,f(n)f(n1)f(n1)2n11.从而f(n)(n3)f(3)2nn1.3(2018南京、盐城一模)已知nN*,nf(n)CC2CCrCCnCC.(1)求f(1),f(2),f(3)的值;(2)试猜想f(n)的表达式(用一个组合数表示),并证明你的猜想解:(1)由条件,nf(n)CC2CCrCCnCC,在中令n1,得f(1)CC1.在中令n2,得2f(2)CC2CC6,得f(2)3.在中令n3,得3f(3)CC2CC3CC30,得f(3)10.(2)猜想f(n)C(或f(n)C)欲证猜想成立,只要证等式nCCC2CCrCCnCC成立法一:(直接法)当n1时,等式显然成立当n2时,因为rCnnC, 故rCC(rC)CnCC.故只需证明nCnCCnCCnCCnCC.即证CCC CC CC CC.而CC,故即证CCC CC CC CC.由等式(1x)2n1(1x)n1(1x)n可得,左边xn的系数为C.而右边(1x)n1(1x)n(CCxCx2Cxn1)(CCxCx2Cxn),所以xn的系数为CC CC CC CC.由(1x)2n1(1x)n1(1x)n恒成立可得成立综上,f(n)C成立法二:(构造模型)构造一个组合模型,一个袋中装有(2n1)个小球,其中n个是编号为1,2,n的白球,其余(n1)个是编号为1,2,n1的黑球现从袋中任意摸出n个小球,一方面,由分步计数原理其中含有r个黑球(nr)个白球)的n个小球的组合的个数为CC,0rn1,由分类计数原理有从袋中任意摸出n个小球的组合的总数为CC CC CC CC.另一方面,从袋中(2n1)个小球中任意摸出n个小球的组合的个数为C.故CCC CC CC CC,余下同法一法三:(利用导数)由二项式定理,得(1x)nCCxCx2Cxn.两边求导,得n(1x)n1C2CxrCxr1 nCxn1.,得n(1x)2n1(CCxCx2Cxn)(C2CxrCxr1 nCxn1)左边xn的系数为nC.右边xn的系数为CC2CCrCCnCCCC2CCr CCnCCCC2CCr CCnCC.由恒成立,得nCCC2CCr CCnCC.故f(n)C成立法四:(构造模型)由nf(n)CC2CCrCCnCC,得nf(n)nCC(n1)CCCCnCC(n1)CCCC,所以2nf(n)(n1)(CCCCCC) (n1)(CCCCCC),构造一个组合模型,从2n个元素中选取(n1)个元素,则有C种选法,现将2n个元素分成两个部分n,n,若(n1)个元素中,从第一部分中取n个,第二部分中取1个,则有CC种选法,若从第一部分中取(n1)个,第二部分中取2个,则有CC种选法,由分类计数原理可知CCCCCCC.故2nf(n)(n1)C,所以f(n)C.4(2018苏锡常镇调研(二)已知函数f(x)(x)2n1(nN*,xR)(1)当n2时,若f(2)f(2)A,求实数A的值;(2)若f(2)m(mN*,01),求证:(m)1.解:(1)当n2时,f(x)(x)5Cx5Cx4Cx3()2Cx2()3Cx()4C()5, 所以f(2)f(2)(2)5(2)52C()124C()322C()52(516104525)610,所以A610. (2)证明:因为f(x)(x)2n1Cx2n1Cx2nCx2n1()2C()2n1,所以f(2)C22n1C22nC22n1()2C()2n1,由题意知,f(2)(2)2n1m(mN*,01),首先证明对于固定的nN*,满足条件的m,是唯一的假设f(2)(2)2n1m11m22(m1,m2N*,011,021,m1m2,12),则m1m2210,而m1m2Z,21(1,0)(0,1),矛盾所以满足条件的m,是唯一的. 下面我们求m及的值:因为f(2)f(2)(2)2n1(2)2n1(2)2n1(2)2n12C22n1C22n1()2C22n3()4C21()2n,显然f(2)f(2)N*. 又因为2(0,1),故(2)2n1(0,1),即f(2)(2)2n1(2)2n1(0,1). 所以令m2C22n1C22n1()2C22n3()4C21()2n,(2)2n1,则mf(2)f(2),f(2),又mf(2), 所以(m)f(2)f(2)(2)2n1(2)2n1(54)2n11. B组大题增分练1(2016江苏高考)(1)求7C4C的值;(2)设m,nN*,nm,求证:(m1)C(m2)C(m3)CnC(n1)C(m1)C.解:(1)7C4C740.(2)证明:当nm时,结论显然成立当nm时,(k1)C(m1)(m1)C,km1,m2,n.又因为CCC,所以(k1)C(m1)(CC),km1,m2,n.因此,(m1)C(m2)C(m3)C(n1)C(m1)C(m2)C(m3)C(n1)C(m1)C(m1)(CC)(CC)(CC)(m1)C.2(2018南京、盐城二模)现有(n2,nN*)个给定的不同的数随机排成一个下图所示的三角形数阵:设Mk是第k行中的最大数,其中1kn,kN*.记M1M2.解:(1)由题意知p2,即p2的值为.(2)证明:先排第n行,则最大数在第n行的概率为;去掉第n行已经排好的n个数,则余下的n个数中最大数在第n1行的概率为;故pn.由于2n(11)nCCCCCCCCCC,故,即pn.3(2018苏州暑假测试)设集合M1,0,1,集合An(x1,x2,xn)|xiM,i1,2,n,集合An中满足条件“1|x1|x2|xn|m”的元素个数记为S.(1)求S和S的值;(2)当mn时,求证:S3n2m12n1.解:(1)S8,S32.(2)证明:设集合P0,Q1,1若|x1|x2|xn|1,即x1,x2,x3,xn中有n1个取自集合P,1个取自集合Q,故共有C21种可能,即为C21,同理,|x1|x2|xn|2,即x1,x2,x3,xn中有n2个取自集合P,2个取自集合Q,故共有C22种可能,即为C22,若|x1|x2|xn|m,即x1,x2,x3,xn中有nm个取自集合P,m个取自集合Q,故共有C2m种可能,即为C2m,所以SC21C22C2m,因为当0kn时,C1,所以C10,所以SC21C22C2mC20(C21C22C2m)(C1)2m1(C1)2n(C20C21C22C2mC2m1C2n)(2m12m22n)(12)n(2n12m1)3n2n12m1.所以当mn时,S3n2m12n1.4(2018常州期末)对一个量用两种方法分别算一次,由结果相同构造等式,这种方法称为“算两次”的思想方法利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式如:考察恒等式(1x)2n(1x)n(1x)n(nN*),左边x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论