




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
反比例函数章末复习,九年级下册,复习目标,1. 掌握反比例函数的图像与性质.,2. 理解反比例函数的几何意义,掌握数形结合思想.,3.能运用反比例函数的性质熟练解答问题.,知识梳理,1. 反比例函数的概念,定义:形如_ (k为常数,k0) 的函数称为反 比例函数,其中x是自变量,y是x的函数,k是比例 系数 三种表达式方法: 或 xyk 或ykx1 (k0) 防错提醒:(1)k0;(2)自变量x0;(3)函数y0.,2. 反比例函数的图象和性质,(1) 反比例函数的图象:反比例函数 (k0)的 图象是 ,它既是轴对称图形又是中心 对称图形. 反比例函数的两条对称轴为直线 和 ; 对称中心是: .,双曲线,原点,y = x,y=x,(2) 反比例函数的性质,k0时,图像在_象限,在每个象限内,y 随 x 的增大而_;,k0时,图像在_象限,在每个象限内,y 随 x 的增大而_.,一、三,减小,二、四,增大,(3) 反比例函数的应用:,= 2,=,= ,3.反比例函数与一次函数的图象的交点的求法,求直线 yk1xb (k10) 和双曲线 (k20)的交点坐标就是解这两个函数解析式组成的方 程组.,考点训练,1. 下列函数中哪些是正比例函数?哪些是反比例函数?, y = 3x1, y = 2x2, y = 3x,2. 已知点 P(1,3) 在反比例函数 的图象上, 则 k 的值是 ( ) A. 3 B. 3 C. D.,B,3. 若 是反比例函数,则 a 的值为 ( ) A. 1 B. 1 C. 1 D. 任意实数,A,4. 已知点 A(1,y1),B(2,y2),C(3,y3) 都在反比例函数 的图象上,则y1,y2,y3的大小关系是 ( ) A. y3y1y2 B. y1y2y3 C. y2y1y3 D. y3y2y1,D,y1 0y2,5.已知点 A (x1,y1),B (x2,y2) (x10x2)都在反比例函数 (k0) 的图象上,则 y1 与 y2 的大小关系 (从大到小) 为 .,难点提升,1. 如图,两个反比例函数 和 在第一象限内的图象分别是 C1 和 C2,设点 P 在 C1 上,PA x 轴于点A,交C2于点B,则POB的面积为 .,1,2. 如图,在平面直角坐标系中,点 M 为 x 轴正半轴 上 一点,过点 M 的直线 l y 轴,且直线 l 分别与反比 例函数 (x0)和 (x0) 的图象交于P,Q 两点,若 SPOQ=14, 则 k 的值为 .,20,4,10,3. 如图,已知 A (4, ),B (1,2) 是一次函数 y =kx+b 与反比例函数 (m0)图象的两个交点,ACx 轴于点 C,BDy 轴于点 D (1) 根据图象直接回答:在第二象限内,当 x 取何值 时,一次函数的值大于反比例函数的值;,解:当4 x 1时,一次函数的值大于反比例函数的值.,(2) 求一次函数解析式及 m 的值;,解:把A(4, ),B(1,2)代入 y = kx + b中,得,4k + b = ,,k + b =2,,所以一次函数的解析式为 y = x + .,把 B (1,2)代入 中,得 m =12=2.,走近中考,1.如图,设反比例函数的解析式为 (k0) (1) 若该反比例函数与正比例函数 y =2x 的图象有一个 交点 P 的纵坐标为 2,求 k 的值;,P,2,解:由题意知点 P 在正比例函数 y =2x 上, 把 P 的纵坐标 2 带入该解析 式,得P (1,2), 把 P (1,2) 代入 , 得到,P,2,(2) 若该反比例函数与过点 M (2,0) 的直线 l:y=kx +b 的图象交于 A,B 两点,如图所示,当 ABO 的面积为 时,求直线 l 的解析式;,解:把 M (2,0) 代入 y = kx + b, 得 b= 2k,y = kx+2k,,解得 x =3 或 1.,ykx+2k,, B (3,k),A (1,3k)., ABO的面积为, 23k + 2k =,解得, 直线 l 的解析式为 y = x + ,(3) 在第(2)题的条件下,当 x 取何值时,一次函数的 值小于反比例函数的值?,解:当 x 3或 0x1 时,一次函数的值小于反 比例函数的值.,2.病人按规定的剂量服用某种药物,测得服药后 2 小时,每毫升血液中的含药量达到最大值为 4 毫克. 已知服药后,2 小时前每毫升血液中的含药量 y (单位:毫克)与时间 x (单位:小时) 成正比例;2 小时后 y 与 x 成反比例 (如图). 根据以上信息解答下列问题:,(1) 求当 0 x 2 时,y 与 x 的函数解析式;,解:当 0 x 2 时,y 与 x 成正比例函数关系 设 y kx,由于点 (2,4) 在线段上, 所以 42k,k2,即 y2x.,(2) 求当 x 2 时,y 与 x 的函数解析式;,解:当 x 2时,y 与 x 成反比例函数关系, 设,解得 k 8.,由于点 (2,4) 在反比例函数的图象上, 所以,即,(3) 若每毫升血液中的含药量不低于 2 毫克时治疗有 效,则服药一次,治疗疾病的有效时间是多长?,解:当 0x2 时,含药量不低于 2 毫
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年循环利用型绿色包装材料批量采购与销售合作协议
- 2025年特种用途铲车定制合同:专用工程机械供应商合作协议
- 2025年高校临时教师服务采购与教学效果综合评估协议
- 2025年智能印刷厂品牌形象设计、研发及市场拓展承包合同
- 2025年北京市核心商务区写字楼租赁合同范本下载及详细解析
- 2025年度能源行业智能化升级改造技术咨询服务协议
- 二零二五年度绿色建筑节能改造项目合作协议
- 二零二五年度互联网教育平台资产收购协议
- 2025年O2O智慧健康养生服务合作框架协议范本
- 海外法学公开课课件
- 塔吊拆除安全操作方案模板
- 普惠金融业务讲座
- 虚拟健康咨询接受度分析-洞察及研究
- 多发性周围神经病护理查房
- 巡检员质量培训
- GB/T 1303.1-1998环氧玻璃布层压板
- GB/T 11684-2003核仪器电磁环境条件与试验方法
- 家具厂精益改善推行报告课件
- 不锈钢棚施工方案
- 第2章 动车组检修工艺基础动车组维护与检修
- 筋针疗法牛君银培训课件
评论
0/150
提交评论