河北初中数学培训储瑞年.ppt_第1页
河北初中数学培训储瑞年.ppt_第2页
河北初中数学培训储瑞年.ppt_第3页
河北初中数学培训储瑞年.ppt_第4页
河北初中数学培训储瑞年.ppt_第5页
已阅读5页,还剩138页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对数学课程和 数学教学的再思考 学习2011版数学课程标准 2012.4.28 石家庄,一. 数学课程标准修订的依据与原则,数学课程标准修订以国家中长期教育改革和发展规划纲要(2010-2020)为指导,遵循基础教育课程改革纲要确定的基础教育课程改革的基本理念,总结新一轮课程改革实施10年来的经验,使数学课程更加完善,适应社会发展与教育改革的需要。,坚持体现国家利益,坚持基础教育课程改革的大方向,以课程改革的实践和调查研究的结果为基础,针对实施过程中出现的问题和各方面提出的建议进行修订,力求标准更加完善:使标准表述更加准确、规范、明了、全面;使标准结构更加合理、思路更加清晰;进一步增加标准的可操作性,更适合教材编写、教师教学和学习评价。,处理好几个关系 过程和结果 学生自主学习和教师讲授 合情推理和演绎推理 生活情境和知识系统性,教学大纲到课程标准的转变体现在: 教育理念由“知识为本”转为“育人为本” 课程目标由“双基”转为“四基” 内容方法由“结果性”转为“结果性”加 “过程性” 评价指标由“单一”转为“多元”,二. 数学与数学课程,数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。,20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型进而解决问题,直接为社会创造价值。,数学是研究数量关系和空间形式的科学。,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。,数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。,在纯数学中,知性所处理的是“它 自己的自由创造物和想象物”;数和形 的概念是“对纯数学来说足够的,并且 由它自己创造的对象”,所以纯数学具 有“不依赖于特殊经验和世界现实内容 的意义”。 杜林,数和形的概念不是从其他任何地方,而是从现实世界中得来的.纯数学是以现 实世界的空间形式和数量关系,也就是说,以非常现实的材料为对象的。这种材料 以极度抽象的形式出现,这只能在表面 上掩盖它起源于外部世界 。 恩格斯,数学科学是集严密性、逻辑性、精 确性和创造力与想象力与一身的一门 学问.这个领域已被称为模型的科学。 美国国家研究委员会振兴美国数学,义务教育阶段的数学课程应突出基础性、普及性和发展性,使数学教育面向全体学生,实现 人人学有价值的数学; 人人都能获得必需的数学; 不同的人在数学上得到不同的发展。 (实验稿),义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。 数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 (修订稿),三. 课程目标, 获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能; 初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识; 体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心; 具有初步的创新意识和实践能力,在情感态度和一般能力方面都能得到充分发展。,总目标 通过义务教育阶段的数学学习,学生能: 1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。 2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。 3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。,(一) 如何认识“四基”,1.“双基”为何要发展为“四基” 2. 获得基本的数学思想 3. 获得基本的活动经验 4.“四基”是一个有机的整体,1. “双基”为何要发展为“四基”? 体现数学教育三维目标:知识与技能;过程与方法;情感、态度和价值观 。 符合素质教育的理念,有利于培养创 新型人才。,2. 获得基本的数学思想 数学思想是数学科学发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓,内涵十分丰富。,不懂得数学思想方法的数学教师不是一个称职的教师。 徐利治,数学思想是对数学知识的本质的认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学认识过程中提炼上升的数学观点,它在认识活动中被反复运用带有普遍的指导意义是建立数学和用数学解决问题的指导思想。 钱佩玲主编中学数学思想方法,数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中。 高考考试大纲的说明,在中学教学和高考考查中,取得共识的数学思想有:函数与方程的思想,数形结合的思想,分类与整合的思想,化归与转化的思想,特殊与一般的思想,有限与无限的思想,或然与必然的思想。 高考考试大纲的说明,例1 向高为H的水瓶中注 水, 注满为止,如果注水量 V与水深h的函数关系的图象 如图所示,那么水瓶的形状是 A. B. C. D.,函数图象的特征是 “先陡后平”,表明注水 过程是“先快后慢”,因 此,水瓶的形状应是 “下底大,而上口小”, 正确选项是B.,由函数图象可以看出: 当 时,注水量已超 过总注水量的一半,只有 B选项中的水瓶符合题意.,例2 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是,加速行驶:s=at2 (a0) 匀速行驶:s=s0+vt (v0) 减速行驶:s=v0t+bt2 (b0),例3 如图,C为O直径AB 上一动点,过点C的直线交O于 D,E两点,ACD=45, DF AB 于F,EG AB于G. 当点C在AB 上运动时,设AF=x,DE=y,下列图象 中,能表示与的函数关系的是,例4 设a,b,c均为正数,且 则 abc cba cab bac,例5 a0 是方程ax2+2x+1=0至少有一个负数根的 A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件,a0 方程ax2+2x+1=0两根异号; a=0 方程ax2+2x+1=0的根为x= -0.5; a=1 方程ax2+2x+1=0两根均为-1.,例6 有两个相同的直三棱柱,高为 , 底面三角形的三边长分别为3a,4a, 5a.用它们拼成一个三棱柱或四棱柱,在所有可能情形中,全面积最小 的是一个四棱柱,则a 的取值范围是_.,例7 在坐标平面内,与点A(1,2)距离为1,与点B(3,1)距离为2的直线有 A.1条 B.2条 C.3条 D.4条,例8 如图,动点P在正方体ABCDA1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与 正方体表面相交于M,N. 设BP=x,MN=y,则函数 y =f(x)的图象大致是,标准中“数学的基本思想”主要指: 数学抽象的思想;数学推理的思想;数学模型的思想。,数学抽象的思想派生出的有: 分类的思想;集合的思想;数形结合的思想;变中有不变的思想;符号表示的思想;对称的思想;对应的思想;有限与无限的思想等。,数学推理的思想派生出的有: 归纳的思想;演绎的思想;公理化思想;转换与化归的思想;联想与类比的思想;逐步逼近的思想;代换的思想;特殊与一般的思想等。,数学模型的思想派生出的有: 简化的思想;量化的思想;函数的思想;方程的思想;优化的思想;随机的思想;抽样统计的思想等。,数学方法:在用数学思想解决具体问题时,会形成程序化的操作,就构成数学方法。 数学方法具有层次性,较高层次的有:演绎推理的方法,合情推理的方法,变量替换的方法等价变形的方法,分类讨论的方法等。较低层次的有分析法,综合法,穷举法,反证法,构造法待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,配方法,列表法,图象法等。,3. 获得基本的活动经验 “活动经验”与“活动”密不可分,要有 “动”手动、口动和脑动。既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的活动,也包括课程教学中特意设计的活动。,“活动经验”与“经验”密不可分。学生要把活动中的经历、体会总结上升为“经验”。既可以是活动当时的经验,也可以是延时反思的经验;既可以是学生自己摸索出的经验,也可以是受别人启发得出的经验;既可以是从一次活动中得到的经验,也可以是从多次活动中逐渐积累得到的经验。这些“经验”必须内化为学生本人的东西,才可以认为学生获得了“活动经验”。,数学基本活动经验是学生从数学的角度进行思考,通过亲身经历数学活动过程所获得的具有个性特征的经验。应具有主体性、实践性、发展性、多样性等特征。,学生只有积极参与数学课程的教学过程,经过独立思考,探索实践,合作交流等,才有可能积累数学活动经验。 标准中设置 “综合与实践”的课程内容,强调以问题为载体,让学生在解决问题的实践中获得数学活动经验。,4. “四基”是一个有机的整体 “四基”不是简单的叠加与混合,而是相互联系、相互交融,相互促进的整体。基础知识和基本技能是数学教学的主要载体;数学思想则是数学教学的精髓,是课堂教学的主线;数学思想的教学要以数学知识为载体,因势利导,画龙点睛,避免生硬牵强和长篇大论。数学活动是不可或缺的教学形式与过程。,(二)如何增强能力,1. 体会数学的联系 2. 运用数学的思维方式进行思考 3. 增强发现和提出问题的能力、分析和解决问题的能力,1. 体会数学的联系 数学知识之间的联系; 数学与其他学科之间的联系; 数学与生活之间的联系。,对数学知识的考查,既要全面又突出重点. 注重学科的内在联系和知识的综合性,从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点设计试题,使对数学知识的考查达到必要的深度.,2. 运用数学的思维方式进行思考 学会思考的重要性不亚于学会知识,它将使学生终身受益。运用数学的思维方式进行思考,也称为数学的理性思维。包括形象思维、逻辑思维和辩证思维,合情推理和演绎推理等等。 义务教育阶段数学课程进行的全过程,都应注意培养学生的数学思维和数学推理。其中的第一学段和第二学段,学生较多接触和学习的是合情推理,第三学段则必须加强演绎推理的教学。,合情推理包括分类、归纳、类比、联想、猜测等,它们常常是得到新结论的方法和途径,合情推理对于探索规律和发现结论不可或缺。但是,合情推理的结论可能是正确的,也可能是错误的,还需要依靠演绎推理去证明或者证否。对此,在第一学段和第二学段,可以逐渐渗透给学生知道,在第三学段则应该明确地告诉学生,让学生对此有清醒的认识。,演绎推理的基本程序是“三段论”式的逻辑推理,要让学生逐步深入地体会到,所有数学结论都是需要经过证明的。演绎推理的高级形式是形成公理化体系,义务教育阶段不必“公理化”,可以在潜移默化中使学生体会这样一种思维方式。,数学课程的统计部分则有自身的思维规则,不同于演绎推理。统计是从数据出发,以归纳为主要特征,不是从公理和定义出发以演绎为主要特征。统计的结论只有“好”与“差”的区别,而不是“对”与“错”的区别。对于统计在思维方式上的这些特点应有清醒的认识,并且以恰当的方式渗透给学生。,3. 增强发现和提出问题的能力、分析和解决问题的能力 “发现问题”,是经过多方面、多角度的数学思维,从表面上看来没有关系的一些现象中找到数量关系或者空间形式的某些联系,或者找到数量关系或者空间形式的某些矛盾,并把这些联系或者矛盾提炼出来。“提出问题”,是在已经发现问题的基础上,把找到的联系或者矛盾用数学语言、数学符号集中地以问题的形态表述出来。,此次修订增加的“发现问题和提出问题的能力”,是从培养学生的创新意识和创新能力考虑的,是对创新性人才的基本要求。 为此,在数学教学中教师就要努力创设适当的情境,让学生用数学的眼光来看待和分析这些情境,采用探究式的教学方法,引导学生发现问题和提出问题。,(三)培养科学态度,1. 了解数学的价值,提高学习兴趣 2. 养成良好的学习习惯和科学态度,1. 了解数学的价值 数学价值体现在数学的应用:日常生活、工程技术以及其他学科。 数学价值体现在教育上,学生在数学学习中学到了从数学角度看问题,学到了理性思维,思考更有条理,表达更加清晰。数学在培养学生的抽象能力、推理能力和创新能力上,发挥着独特的不可替代的作用。,提高学习兴趣 教师要让学生了解数学的价值,讲究教学方法。恰当的引题和启发式教学,带领学生解决某些带有挑战性的问题,让学生看到数学内在的本质和自身的魅力,都能够激发学生学习数学的兴趣。特别要注意用数学内在的本质,如简洁、明确、强烈的规律性和对客观事物的准确刻画,去引发学生的兴趣,不能以不适当地降低难度来保护学生的学习兴趣。,要尊重和爱护学生,教学中要注意调动学生的积极因素和发现学生的正确成分,多采用正面表扬和鼓励,少采用批评,绝不能有任何挖苦。批评要具体,要分寸得当,要体现出善意。对于学得较差的学生,教师要及早发现并给予适当的个别辅导,要更多地与他们接触,多设计一些启发的层次,让他们真正学懂学会,迅速赶上来。,2. 养成良好的学习习惯和科学态度 良好的学习习惯可以概括为:认真勤奋,独立思考,合作交流,反思质疑。 良好的科学态度有许多内涵,例如坚持真理,修正错误,严谨周密,实事求是等。实事求是是科学态度的核心。,四.核心概念,在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。,核心概念凸显数学学科的特征 核心概念涵盖数学素养的内容 核心概念体现数学思想的要素 核心概念细化数学课程的目标,数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。,数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。,符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。,符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。,空间观念主要表现在:能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。,空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。,几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。,统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。,数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律,数据分析是统计的核心。,运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。,会根据法则、公式进行正确的运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算. 运算求解能力是思维能力和运算技能的结合。运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力. (高考考试大纲),推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或列举反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。,推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。,应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学的知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。,模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。,应用意识有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。,创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。,五.课程内容的 增减与调整,四个学习领域 数与代数 空间与图形 统计与概率 实践与综合应用,四个部分的课程内容 数与代数 图形与几何 统计与概率 综合与实践,(一)课程内容 结构上的变化,数与代数 内容结构没有变化,第一 学段是“数的认识;数的运算;常见的量;探索规律”。第二学段是“数的认识;数的 运算;式与方程;正比例、反比例;探索 规律”。第三学段是“数与式;方程与不等式;函数”。,图形与几何 第一、二学段,内容结构没有变化。第三学段,将原来的四部分调整为三部分:原来的“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明” ,调整为“图形的性 质”、“图形的变化”、“图形与坐标”。其中的“图形的性质”是实验稿中第一和第四部分的整合。,统计与概率 内容结构有较大调整,层次性更加明确。强调培养数据分析观念,与学生现实生活的联系更加紧密。第一学段内容减少,主要是学会分类、会进行简单的数据搜集与整理的;第二学段分为“简单数据统计过程”和“随机现象发生的可能性”两部分;第三学段分为“抽样与数据分析”和“事件的概率两部分”。主要考虑适当降低难度和减少重复。调整后在三个学段的要求上有明显区分,难度上呈现出一定的梯度。,综合与实践 内容做了较大修改。进一步明确了“综合与实践”的内涵和要求,强调“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。“综合与实践”的教学目标是帮助学生积累数学活动经验,培养学生应用意识和创新意识。,(二)第三学段 具体内容的修改,决定内容的增、删和调整的因素: (1) 前后学段知识的衔接; (2) 学生生活经验和未来生活实践; (3) 学生的接受能力和水平; (4) 对学科本质以及核心概念的体现。,1. 删减一些内容 能对含有较大数字的信息作出合理的解释与推断 了解有效数字的概念 能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题 极差、频数折线图, 梯形:掌握梯形的概念和性质;探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件;证明等腰梯形的性质定理和判定定理 圆与圆的位置关系 影子、视点、视角、盲区;雪花曲线和莫比乌斯带等的欣赏 镜面对称,2. 适当增加内容 必学内容: 最简二次根式和最简分式的概念 能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等 能用计算器处理较为复杂的数据 理解平均数的意义,能计算中位数、众数,会比较线段的大小,理解线段的和、差,以及线段中点的意义 了解平行于同一条直线的两条直线平行 会按照边长的关系和角的大小对三角形进行分类 了解并证明圆内接四边形的对角互补; 了解正多边形的概念及正多边形与圆的关系 尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;三角形的外接圆、内切圆;圆的内接正方形和正六边形,选学内容: * 能解简单的三元一次方程组 * 知道给定不共线三点的坐标可以确定一个二次函数 * 了解一元二次方程的根与系数的关系,* 了解平行线性质定理的证明 * 了解相似三角形判定定理的证明 * 了解圆周角及其推论的证明 * 探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧 * 探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等,3. 调整教学要求 “了解整式的概念,会进行简单的整式加、减运算”改为“理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算”。 “了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,理解对顶角、余角、补角等概念”改为“探索并掌握对顶角相等、同角(等角)的余角相等,同角 (等角)的补角相等的性质”。,“能在同一直角坐标系中,感受图形变换后点的坐标的变化”改为“在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系”、“在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系”。,“基本事实”增加到9条 过直线外一点有且仅有一条直线平行于已知直线 一条直线截两条平行直线所得同位角相等 两直线被第三条直线所截,同位角相等两直线平行 两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,两个三角形全等 全等三角形对应边、对应角相等,两点确定一条直线 两点之间线段最短 过一点有且仅有一条直线与这条直线垂直 两直线被第三条直线所截,同位角相等两直线平行 过直线外一点有且仅有一条直线平行于已知直线 两边及其夹角分别相等的两个三角形全等 两角及其夹边分别相等的两个三角形全等 三边分别相等的两个三角形全等 两条直线被一组平行线所截,所得对应线段成比例,综合与实践 保留“要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系” 增加“反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验”,六.实施建议,(一)教学建议, 让学生经历数学知识的形成和应用过程 鼓励学生自主探索与合作交流 尊重学生的个体差异,满足多样化学习需要 应关注证明的必要性、基本过程与基本方法 注重数学知识之间的联系提高解决问题能力 充分运用现代信息技术, 数学教学活动要注重课程目标的整体实现 重视学生在学习活动中的主体地位 注重学生对基础知识、基本技能理解和掌握 感悟数学思想、积累数学活动经验、 关注学生情感态度的发展 合理把握“综合与实践”的实施, 教学中应注意的几个关系 (1) 面向全体学生与关注学生个体差异的关系 (2) “预设”与“生成”的关系 (3) 合情推理与演绎推理的关系 (4) 使用现代信息技术与教学手段多样化关系,重视学生在学习活动中的主体地位 有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。 (1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。 (2)教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。 (3)处理好学生主体地位和教师主导作用的关系。,好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。 实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体。,教学中应当注意的几个关系 1. 面向全体学生与关注学生个体差异的关系。 教学活动应努力使全体学生达到课程目标的基本要求,同时要关注学生的个体差异,促进每个学生在原有基础上的发展。 对于学习有困难的学生,教师要给予及时的关注与帮助,鼓励他们主动参与数学学习活动,并尝试用自己的方式解决问题、发表自己的看法,要及时地肯定他们的点滴进步,耐心地引导他们分析产生困难或错误的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有兴趣的学生,教师要为他们提供足够的材料和思维空间,指导他们阅读,发展他们的数学才能。,2.“预设”与“生成”的关系。 教学方案是教师对教学过程的“预设”,教学方案的形成依赖于教师对教材的理解、钻研和再创造。理解和钻研教材,应以本标准为依据,把握好教材的编写意图和教学内容的教育价值;对教材的再创造,集中表现在:能根据所教班级学生的实际情况,选择贴切的教学素材和教学流程,准确地体现基本理念和课程内容规定的要求。 实施教学方案,是把“预设”转化为实际的教学活动。在这个过程中,师生双方的互动往往会“生成”一些新的教学资源,这就需要教师能够及时把握,因势利导,适时调整预案,使教学活动收到更好的效果。,3.合情推理与演绎推理的关系。 推理贯穿于数学教学的始终,推理能力的形成和提高需要 一个长期的、循序渐进的过程。义务教育阶段要注重学生思考 的条理性,不要过分强调推理的形式。 推理包括合情推理和演绎推理。教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求。 在第三学段中,应把证明作为探索活动的自然延续和必要发 展,使学生知道合情推理与演绎推理是相辅相成的两种推理形式。,例9 平面几何里有勾股定理: “设ABC中,AB,AC互相垂直,则AB2+AC2=BC2”, 拓展到空间,类比勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A-BCD的三个侧面ABC,ACD,ADB两两垂直,则 .”,4. 使用现代信息技术与教学手段多样化的关系 合理地应用现代信息技术,注重信息技术与课程内容的整合,能有效地改变教学方式,提高课堂教学的效益。现代信息技术的作用不能完全替代原有的教学手段,其真正价值在于实现原有的教学手段难以达到甚至达不到的效果。例如,利用计算机展示函数图象、几何图形的运动变化过程;利用计算机的随机模拟结果,引导学生更好地理解随机事件以及随机事件发生的概率等。,在应用现代信息技术的同时,教师还应注重课堂教学的板书设计。必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。,(二)评价建议, 注重对学生数学学习过程的评价 恰当评价学生的基础知识与基本技能 重视对学生发现问题、解决问题能力的评价 评价主体和方式要多样化 评价结果采用定性和定量相结合的方式呈现, 基础知识和基本技能的评价 数学思考和问题解决的评价 情感态度的评价 注重对学生数学学习过程的评价 评价主体的多元化和评价方式的多样性 恰当呈现和利用评价结果 合理设计与实施书面测验,书面测验是考查学生课程目标达成状况的重要方式,合理地设计和实施书面测验有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。,1. 对于学生基础知识和基本技能达成情况的评价,必须准确把握课程内容中的要求。课程内容中的选学内容,不得列入考查(考试)范围。 对基础知识和基本技能的考查,要注重考查学生对其中所蕴涵的数学本质的理解,考查学生能否在具体情境中合理应用。因此,在设计试题时,应淡化特殊的解题技巧,不出偏题怪题。,2. 在设计试题时,应该关注并且体现本标准的设计思路中提出的几个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想,以及应用意识和创新意识。,3. 根据评价的目的合理地设计试题的类型,有效地发挥各种类型题目的功能。例如,为考查学生从具体情境中获取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论