




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、无穷限的广义积分,第四节 广义 积 分,二、无界函数的广义积分,一、无穷区间的广义积分,例 1 求由曲线 y = e-x,,y 轴及 x 轴所围成开口曲边梯形的面积.,解 这是一个开口曲边梯形,,为求其面积,任取 b 0, + ),,在有限区间 0, b 上,,以曲线 y = e- x为曲边的曲边梯形面积为,b,即,当 b + 时,阴影部分曲边梯形面积的极限就是开口曲边梯形面积,,定义 1 设函数 f (x) 在 a, + )上连续,,取实数 b a,,如果极限,则称此极限为函数 f (x) 在无穷区间a, + ) 上的广义积分,,这时也称广义积分收敛,,记作,即,存在,,否则称广义积分发散.,定义 2 设函数 f (x) 在 (- , b 上连续,,取实数 a b,,如果极限,则称此极限值为函数 f (x) 在无穷区间(- , b 上的广义积分,,这时也称广义积分收敛,,记作,即,存在,,否则称广义积分发散.,定义 3 设函数 f (x) 在 (- , + ) 内连续,,且对任意实数 c,,如果广义积分,则称上面两个广义函数积分之和为 f (x) 在无穷区间 (- , + ) 内的广义积分,,这时也称广义积分收敛,,记作,即,都收敛,,否则称广义积分发散.,若 F(x) 是 f (x) 的一个原函数,并记,则定义 1,2,3 中的广义积分可表示为,例 2 求,解,例 3 判断,解,由于当 x + 时,sin x 没有极限,所以广义积分发散 .,例 4 计算,解 用分部积分法,得,例 5 判断,解,故该积分发散.,例 6 证明广义积分,当 p 1 时,收敛;当 p 1 时,发散 .,证 p = 1 时,则,所以该广义积分发散.,当 p 1 时,,综合上述,,该广义积分收敛.,当 p 1 时,,该广义积分发散.,p 1 时,则,二、无界函数的广义积分,定义 4 设函数 f (x) 在区间 (a, b 上连续,,取 e 0 ,,如果极限,则称此极限值为函数 f (x) 在区间 (a, b 上的广义积分,,这时也称广义积分收敛,,否则称广义积分发散.,且,记作,即,存在,,定义 5 设函数 f (x) 在区间 a, b) 上连续,,取 e 0 ,,如果极限,则称此极限值为函数 f (x) 在区间 a, b) 上的广义积分.,这时也称广义积分收敛,,否则称广义积分发散.,且,即,存在,,定义 6 设函数 f (x) 在 a, b上除点 c (a, b) 外连续,,如果下面两个广义积分,则称这两个广义积分之和为函数 f (x) 在区间 a, b 上的广义积分,,这时也称广义积分收敛,,否则,称广义积分发散.,记作,即,都收敛,,若 F(x) 是 f (x) 的一个原函数,,则定义 4,5,6 中的广义积分可表示为,例 7 判断,解,故积分收敛.,-,例 8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吊篮操作证模拟考试题及答案
- 跨平台数据整合-第6篇-洞察与解读
- 2025年事业单位教师招聘地理学科专业知识模拟试卷及答案
- 2025年医院事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷
- 2025年事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷难点解析
- 2025年气象类事业单位招聘考试综合类结构化面试真题模拟试卷
- 衡阳初一考试题目及答案
- 纳米技术神经修复-洞察与解读
- 企业间知识共享机制-洞察与解读
- 河南中专团员考试题及答案
- GB/T 17553.1-1998识别卡无触点集成电路卡第1部分:物理特性
- 2023年西藏山南雅砻天然饮品有限公司招聘笔试模拟试题及答案解析
- 高速铁路客运设施设备课件
- 海南矿产资源概况
- (通用版)水利安全员考试试题库及答案
- 编版一年级下册 《荷叶圆圆》2022年小学语文作业设计
- 施工现场安全检查记录表(周)以及详细记录
- 汽车配件购销合同集合
- 雨污水管道表格全全套资料
- 石库门——中西合璧建筑的典范
- 数独比赛六宫练习题96道练习
评论
0/150
提交评论