




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
因式分解,课前小测: 1.选择题: 1)下列各式能用平方差公式分解因式的是( ) 4X+y B. 4 x- (-y) C. -4 X-y D. - X+ y -4a +1分解因式的结果应是 ( ) -(4a+1)(4a-1) B. -( 2a 1)(2a 1) -(2a +1)(2a+1) D. -(2a+1) (2a-1) 2. 把下列各式分解因式: 1)18-2b 2) x4 1,D,D,因式分解的基本方法2,运用公式法 把乘法公式反过来用,可以把符合公式 特点的多项式因式分解,这种方法叫公式法.,(1) 平方差公式: a2-b2=(a+b)(a-b) (2) 完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2,平方差公式反过来就是说:两个数的平方差,等于这两个数的和与这两个数的差的积,a - b = (a+b)(a-b),因式分解,平方差公式: (a+b)(a-b) = a - b,整式乘法,将下面的多项式分解因式 1) m - 16 2) 4x - 9y,m - 16= m - 4 =( m + 4)( m - 4),a - b = ( a + b)( a - b ),4x - 9y=(2x)-(3y)=(2x+3y)(2x-3y),例1.把下列各式分解因式 (1)16a- 1 ( 2 ) 4x- mn ( 3 ) x - y,9,25,1,16,( 4 ) 9x + 4,解:1)16a-1=(4a) - 1 =(4a+1)(4a-1),解:2) 4x- mn =(2x) - (mn) =(2x+mn)(2x-mn),例2.把下列各式因式分解 ( x + z )- ( y + z ) 4( a + b) - 25(a - c) 4a - 4a (x + y + z) - (x y z ) 5)a - 2,1,2,巩固练习: 1.选择题: 1)下列各式能用平方差公式分解因式的是( ) 4X+y B. 4 x- (-y) C. -4 X-y D. - X+ y -4a +1分解因式的结果应是 ( ) -(4a+1)(4a-1) B. -( 2a 1)(2a 1) -(2a +1)(2a+1) D. -(2a+1) (2a-1) 2. 把下列各式分解因式: 1)18-2b 2) x4 1,D,D,完全平方公式,现在我们把这个公式反过来,很显然,我们可以运用以上这个公式来分解因式了,我们把它称为“完全平方公式”,我们把以上两个式子叫做完全平方式,“头” 平方, “尾” 平方, “头” “尾”两倍中间放.,判别下列各式是不是完全平方式,是,是,是,是,完全平方式的特点:,1、必须是三项式,2、有两个平方的“项”,3、有这两平方“项”底数的2倍或-2倍,下列各式是不是完全平方式,是,是,是,否,是,否,请补上一项,使下列多项式成为完全平方式,我们可以通过以上公式把“完全平方式”分解因式 我们称之为:运用完全平方公式分解因式,例题:把下列式子分解因式,4x2+12xy+9y2,请运用完全平方公式把下列各式分解因式:,练习题:,1、下列各式中,能用完全平方公式分解的是( ) A、a2+b2+ab B、a2+2ab-b2 C、a2-ab+2b2 D、-2ab+a2+b2 2、下列各式中,不能用完全平方公式分解的是( ) A、x2+y2-2xy B、x2+4xy+4y2 C、a2-ab+b2 D、-2ab+a2+b2,D,C,3、下列各式中,能用完全平方公式分解的是( ) A、x2+2xy-y2 B、x2-xy+y2 C、 D、 4、下列各式中,不能用完全平方公式分解的是( ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4,D,D,5、把 分解因式得 ( ) A、 B、 6、把 分解因式得 ( ) A、 B、,B,A,7、如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是( ) A、20 B、-20 C、10 D、-10 8、如果x2+mxy+9y2是一个完全平方式,那么m的值为( ) A、6 B、6 C、3 D、3,B,B,9、把 分解因式得( ) A、 B、 C、 D、 10、计算 的结果是( ) A、 1 B、-1 C、 2 D、-2,C,A,思考题: 1、多项式: (x+y)2-2(x2-y2)+(x-y)2能用完全平方公式分解吗? 2、在括号内补上一项,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自己做水电改造施工方案
- 第6课《我的家庭贡献与责任》第一课时-统编版《道德与法治》四年级上册教学设计
- 建筑临水临电施工方案
- 莆田垃圾池防腐施工方案
- 三亚文明施工方案(3篇)
- 西师大版五年级语文下册月考周末练习考试
- 配送中心信息安全保障方案
- 2025年远程医疗手术中5G+VR技术创新解决方案探讨
- 云南专业密室施工方案
- 校园校外安全教育班会
- 装配式建筑施工技术在建筑工程中的应用
- 《大客户管理和销售》
- 公司VI、SI设计内容选项
- YY/T 0698.2-2022最终灭菌医疗器械包装材料第2部分:灭菌包裹材料要求和试验方法
- 沪教牛津版小学英语五年级上册全册集体备课含教学计划及进度表
- 全国统一建筑安装工程工期定额
- 5.《秋天的怀念》课件+教学设计+视频朗读
- 上海破产管理人扩容考试参考题库(含答案)
- 涉河建设项目审查管理体会及探讨课件-涉河建设项目管理及建设方案审查技术标准课件
- DB44∕T 1168-2013 轮扣式钢管脚手架构件
- NMR有机氟谱课件
评论
0/150
提交评论