《隐函数求导》PPT课件.ppt_第1页
《隐函数求导》PPT课件.ppt_第2页
《隐函数求导》PPT课件.ppt_第3页
《隐函数求导》PPT课件.ppt_第4页
《隐函数求导》PPT课件.ppt_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9.4内容回顾,1. 复合函数求导的链式法则,“连线相乘,分线相加,单路求导,叉路偏导”,例如,2. 全微分形式不变性,不论 u , v 是自变量还是因变量,第九章,一、一个方程所确定的隐函数 及其导数,二、方程组所确定的隐函数组 及其导数,9.5 隐函数的求导方法,本节讨论 :,1) 方程在什么条件下才能确定隐函数 .,例如, 方程,当 C 0 时, 能确定隐函数;,当 C 0 时, 不能确定隐函数;,2) 给出方程(组)能确定隐函数的条件,及连续性、可微性,及求导公式的推导.,一、一个方程所确定的隐函数及其导数,定理1. 设函数,则方程,单值连续函数 y = f (x) ,并有连续,(隐函数求导公式),求导公式推导如下:, 具有连续的偏导数;,的某邻域内可惟一确定一个,在点,的某一邻域内满足,满足条件,导数,(偏连),(非空),(非零),(关于因变量),两边求微分,在,的某邻域内,若F( x , y ) 的二阶偏导数也都连续,二阶导数 :,则还有,例1. 验证方程,在点(0,0)某邻域,可确定一个单值可导隐函数,解: 令,连续 ,由 定理1 可知,导的隐函数,则,在 x = 0 的某邻域内方程存在单值可,且,并求,(偏连),(非空),(非零),两边对 x 求导,两边再对 x 求导,令 x = 0 , 注意此时,导数的另一求法, 利用隐函数求导,定理2 .,若函数,的某邻域内具有连续偏导数 ,则方程,在点,并有连续偏导数,定一个单值连续函数 z = f (x , y) ,求导公式推导如下:,满足, 在点,满足:,某一邻域内可惟一确,(偏连),(非空),(非零),两边求微分,所以,例2. 设,解法1 利用隐函数求导,解法2 利用公式,设,则,例3.,设F( x , y)具有连续偏导数,解法1 利用偏导数公式.,确定的隐函数,则,已知方程,故,对方程两边求微分:,解法2 微分法.,二、方程组所确定的隐函数组及其导数,隐函数存在定理还可以推广到方程组的情形.,由 F、G 的偏导数组成的行列式,称为F、G 的雅可比( Jacobi )行列式.,以两个方程确定两个隐函数的情况为例 ,即,( 关于u,v ),定理3.,的某一邻域内具有连续偏,设函数,则方程组,的单值连续函数,且有偏导数公式 :, 在点,的某一邻域内可惟一确定一组满足条件,满足:,导数;,( 关于u,v ),(偏连),(非空),(非零),推导偏导数公式如下:,有隐函数组,则,两边对 x 求导得,设方程组,在点P 的某邻域内,故得,系数行列式,同样可得,例4. 设,解:,方程组两边对 x 求导,并移项得,求,同理可求,答案:,设,故有,例5.设函数,在点(u,v) 的某一,1) 证明函数组,( x, y) 的某一邻域内,2) 求,解: 1) 令,对 x , y 的偏导数.,在与点 (u, v) 对应的点,邻域内有连续的偏导数,且,惟一确定一组单值、连续且具有,连续偏导数的反函数,式两边对 x 求导, 得,则有,由定理 3 可知结论 1) 成立.,2) 求反函数的偏导数.,从方程组解出,(1.偏连;2.非空;3.非零.),同理, 式两边对 y 求导, 可得,用公式,其他,例6(P38 11),由方程,确定,f,F均具有一阶连续偏导数.,证明:,证法一:,两边求微分得,,两边求微分得,,(2),并解出,例6(P38 11),由方程,确定,f,F均具有一阶连续偏导数.,证明:,证法二:,x,为由,确定的隐函数,内容小结,1. 隐函数( 组) 存在定理,2. 隐函数 ( 组) 求导方法,方法1. 利用复合函数求导法则直接计算 ;,方法2. 利用微分形式不变性 ;,方法3. 代公式,条件:、2、3,偏连;非空;非零,作业 19-22,求,解法2. 利用全微分形式不变性同时求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论